skip to main content


Title: Physics-informed deep learning for solving phonon Boltzmann transport equation with large temperature non-equilibrium
Abstract Phonon Boltzmann transport equation (BTE) is a key tool for modeling multiscale phonon transport, which is critical to the thermal management of miniaturized integrated circuits, but assumptions about the system temperatures (i.e., small temperature gradients) are usually made to ensure that it is computationally tractable. To include the effects of large temperature non-equilibrium, we demonstrate a data-free deep learning scheme, physics-informed neural network (PINN), for solving stationary, mode-resolved phonon BTE with arbitrary temperature gradients. This scheme uses the temperature-dependent phonon relaxation times and learns the solutions in parameterized spaces with both length scale and temperature gradient treated as input variables. Numerical experiments suggest that the proposed PINN can accurately predict phonon transport (from 1D to 3D) under arbitrary temperature gradients. Moreover, the proposed scheme shows great promise in simulating device-level phonon heat conduction efficiently and can be potentially used for thermal design.  more » « less
Award ID(s):
2047127 1934300
NSF-PAR ID:
10338465
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Mg 3 Sb 2− x Bi x family has emerged as the potential candidates for thermoelectric applications due to their ultra-low lattice thermal conductivity ( κ L ) at room temperature (RT) and structural complexity. Here, using ab initio calculations of the electron-phonon averaged (EPA) approximation coupled with Boltzmann transport equation (BTE), we have studied electronic, phonon and thermoelectric properties of Mg 3 Sb 2− x Bi x (x = 0, 1, and 2) monolayers. In violation of common mass-trend expectations, increasing Bi element content with heavier Zintl phase compounds yields an abnormal change in κ L in two-dimensional Mg 3 Sb 2− x Bi x crystals at RT (∼0.51, 1.86, and 0.25 W/mK for Mg 3 Sb 2 , Mg 3 SbBi, and Mg 3 Bi 2 ). The κ L trend was detailedly analyzed via the phonon heat capacity, group velocity and lifetime parameters. Based on quantitative electronic band structures, the electronic bonding through the crystal orbital Hamilton population (COHP) and electron local function analysis we reveal the underlying mechanism for the semiconductor-semimetallic transition of Mg 3 Sb 2-− x Bi x compounds, and these electronic transport properties (Seebeck coefficient, electrical conductivity, and electronic thermal conductivity) were calculated. We demonstrate that the highest dimensionless figure of merit ZT of Mg 3 Sb 2− x Bi x compounds with increasing Bi content can reach ∼1.6, 0.2, and 0.6 at 700 K, respectively. Our results can indicate that replacing heavier anion element in Zintl phase Mg 3 Sb 2− x Bi x materials go beyond common expectations (a heavier atom always lead to a lower κ L from Slack’s theory), which provide a novel insight for regulating thermoelectric performance without restricting conventional heavy atomic mass approach. 
    more » « less
  2. The success of graphene created a new era in materials science, especially for two-dimensional (2D) materials. 2D single-crystal carbon nitride (C 3 N) is the first and only crystalline, hole-free, single-layer carbon nitride and its controlled large-scale synthesis has recently attracted tremendous interest in thermal transport. Here, we performed a comparative study of thermal transport between monolayer C 3 N and the parent graphene, and focused on the effect of temperature and strain on the thermal conductivity ( κ ) of C 3 N, by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The κ of C 3 N shows an anomalous temperature dependence, and the κ of C 3 N at high temperatures is larger than the expected value following the common trend of κ ∼ 1/ T . Moreover, the κ of C 3 N is found to be increased by applying a bilateral tensile strain, despite its similar planar honeycomb structure to graphene. The underlying mechanism is revealed by providing direct evidence for the interaction between lone-pair N-s electrons and bonding electrons from C atoms in C 3 N based on the analysis of orbital-projected electronic structures and electron localization function (ELF). Our research not only conduct a comprehensive study on the thermal transport in graphene-like C 3 N, but also reveal the physical origin of its anomalous properties, which would have significant implications on the future studies of nanoscale thermal transport. 
    more » « less
  3. Abstract

    The Boltzmann Transport equation (BTE) was solved numerically in cylindrical coordinates and in time domain to simulate a Frequency Domain Thermo-Reflectance (FDTR) experiment. First, a parallel phonon BTE solver that accounts for all phonon modes, frequencies, and polarizations was developed and tested. The solver employs the finite-volume method (FVM) for discretization of physical space, and the finite-angle method (FAM) for discretization of angular space. The solution was advanced in time using explicit time marching. The simulations were carried out in time domain and band-based parallelization of the BTE solver was implemented. The phase lag between the temperature averaged over the probed region of the transducer and the modulated laser pump signal was extracted for a pump laser modulation frequency ranging from 20–200 MHz. It was found that with the relaxation time scales used in the present study, the computed phase lag is underpredicted when compared to experimental data, especially at smaller modulation frequencies. The challenges in solving the BTE for such applications are highlighted.

     
    more » « less
  4. Abstract

    This work explores the 2D interfacial energy transport between monolayer WSe2and SiO2while considering the thermal nonequilibrium between optical and acoustic phonons caused by photoexcitation. Recent modeling and experimental work have shown substantial temperature differences between optical and acoustic phonons (ΔTOA) in various nanostructures upon laser irradiation. Generally, characterizations of interfacial thermal resistance (R′′tc) at the nanoscale are difficult and depend on Raman‐probed temperature measurements, which only reveal optical phonon temperature information. Here it is shown that ΔTOAfor supported monolayer WSe2can be as high as 48% of the total temperature rise revealed by optothermal Raman methods—a significant proportion that can introduce sizeable error toR′′tcmeasurements if not properly considered. A frequency energy transport state‐resolved Raman technique (FET‐Raman) along with a 3D finite volume modeling of 2D material laser heating is used to extract the true interfacial thermal resistanceR′′tc(determined by acoustic phonon transport). Additionally, a novel ET‐Raman technique is developed to determine the energy coupling factorGbetween optical and acoustic phonons (on the order of 1015W m−3K−1). This work demonstrates the need for special consideration of thermal nonequilibriums during laser–matter interactions at the nanoscale.

     
    more » « less
  5. Abstract

    Heat transport in nanoscale carbon materials such as carbon nanotubes and graphene is normally dominated by phonons. Here, measurements of in‐plane thermal conductivity, electrical conductivity, and thermopower are presented from 77–350 K on two films with thickness <100 nm formed from semiconducting single‐walled carbon nanotubes. These measurements are made with silicon–nitride membrane thermal isolation platforms. The two films, formed from disordered networks of tubes with differing tube and bundle size, have very different thermal conductivity. One film matches a simple model of heat conduction assuming constant phonon velocity and mean free path, and 3D Debye heat capacity with a Debye temperature of 770 K. The second film shows a more complicated temperature dependence, with a dramatic drop in a relatively narrow window near 200 K where phonon contributions to thermal conductivity essentially vanish. This causes a corresponding large increase in thermoelectric figure‐of‐merit at the same temperature. A better understanding of this behavior can allow significant improvement in thermoelectric efficiency of these low‐cost earth‐abundant, organic electronic materials. Heat and charge conductivity near room temperature is also presented as a function of doping, which provides further information on the interaction of dopant molecules and phonon transport in disordered nanotube films.

     
    more » « less