skip to main content


Title: Who are EEC NSF CAREER awardees?: Educational Backgrounds, Institutional Affiliations, and Public Award Abstracts
This research category full paper explores National Science Foundation (NSF) Faculty Early Career Development (CAREER) Program awardees from the Division of Engineering Education and Centers. The NSF CAREER Award distinguishes researchers as promising future leaders who are advancing the frontier of engineering education research (EER). Additionally, the multidisciplinary rise of EER has resulted in a diverse community of researchers from many backgrounds and academic departments. Given the recognition associated with the CAREER award, it is crucial that all early career faculty members possess the knowledge and support to create high quality CAREER applications. In this study, we investigated the educational backgrounds, institutional affiliation, and public abstracts of CAREER awardees to document prevailing patterns in recognition through CAREER awards. This knowledge informs future work to provide additional support for early career faculty planning on applying to the program.  more » « less
Award ID(s):
1837808
NSF-PAR ID:
10169067
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Education
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This theory paper describes the development and use of a framework for supporting early career faculty development, especially in competitive National Science Foundation (NSF) CAREER proposals. Engineering Education Research (EER) has developed into a field of expertise and a career pathway over the past three decades. In response to numerous reports in the 1990s and early 2000s, multiple EER graduate programs were established in the mid-2000s and a growing number continue to emerge to educate and train the next generation of EER faculty and policy makers. Historically, many came to EER as individuals trained in other disciplines, but with an interest in improving teaching and learning. This approach created an interdisciplinary space where many could learn the norms, practices, and language of EER, as they became scholars. This history combined with the emergence of EER as a discipline with academic recognition; specific knowledge, frameworks, methodologies, and ways of conducting research; and particular emphasis and goals, creates a tension for building capacity to continue to develop EER and also include engineering education researchers who have not completed PhDs in an engineering education program. If EER is to continue to develop and emerge as a strong and robust discipline with high quality engineering education research, support mechanisms must be developed to both recognize outstanding EER scholars and develop the next generation of researchers in the field. The Five I’s framework comes from a larger project on supporting early career EER faculty in developing NSF CAREER proposals. Arguably, a NSF CAREER award is significant external recognition of EER that signals central membership in the community. The Five I’s were developed using collaborative inquiry, a tool and process to inform practice, with 19 EER CAREER awardees during a retreat in March 2019. The Five I’s include: Ideas, Integration, Impact, Identity, and Infrastructure. Ideas is researchers’ innovative and potentially transformative ideas that can make a significant contribution to EER. All NSF proposals are evaluated using the criteria of intellectual merit and broader impacts, and ideas aligned with these goals are essential for funding success. The integration of research and education is a specific additional consideration of CAREER proposals. Both education and research must inform one another in the proposal process. Demonstrating the impact of research is essential to convey why research should be funded. This impact is essential to address as it directly relates to the NSF criteria of broader impacts as well as why an individual is positioned to carry out that impact. This positioning is tied to identity or the particular research expertise from which a faculty member will be a leader in the field. Finally, infrastructure includes the people and physical resources from which a faculty member must draw to be successful. This framework has proven useful in helping early career faculty evaluate their readiness to apply for an NSF CAREER award or highlight the particular areas of their development that could be improved for future success. 
    more » « less
  2. Many engineering faculty have been involved in some form of engineering education research (EER) during their professional career. This may range from a relatively superficial participation as a collaborator on a small departmental education initiative to a larger role in a leadership position as a principal investigator on a multi-institutional research grant. Regardless of the level of involvement, each engineering educator must evolve and invest substantial time to acquire a level of EER knowledge that is commensurate with their desired degree of participation. For those educators who are motivated to fully immerse themselves into a potentially rewarding EER program with the expectation of perpetuity, their evolution is not without barriers to entry and associated risks. The objective of this paper is to share the experiences of three established civil engineering faculty and their mentor who are within two years of receiving their first NSF grants to support EER projects at their home institution. Barriers to entry, challenges, and the lessons learned associated with their growth as emerging engineering education researchers are discussed. Strategies and resources are provided to assist new engineering educators to: lobby for institutional support, secure initial extramural funding, initiate collaborations, formulate short- and long-term career plans, build an Individual Development Plan (IDP), and develop an effective mentor-mentee relationship with an established researcher in the social sciences. It is hoped that this work will provide a holistic summary of their pathway, and to also caution and guide faculty who are contemplating either a partial or complete shift in their research paradigm to EER. 
    more » « less
  3. null (Ed.)
    The Academy of Engineering Success (AcES) program, established in 2012 and supported by NSF S-STEM award number 1644119 throughout 2016-2021, employs literature-based, best practices to support and retain underprepared and underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. A total of 71 students, including 21 students supported by S-STEM scholarships, participated in the AcES program between 2016-2019 at a large R1 institution in the mid-Atlantic region. All AcES students participate in a common program during their first year, comprised of: a one-week summer bridge experience, a common fall professional development course and spring “Engineering in History” course, and a common academic advisor. These students also have opportunities for: (1) faculty-student, student-student, and industry mentor-student interaction, (2) academic support and student success education, and (3) major and career exploration – all designed to help students develop feelings of institutional inclusion, engineering self-efficacy and identity, and academic and professional success skills. They also participate in the GRIT, Longitudinal Assessment of Engineering Self-Efficacy (LAESE), and the Motivated Strategies for Learning Questionnaire (MSLQ) surveys plus individual and focus group interviews at the start, midpoint, and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, their beliefs related to the intrinsic value of engineering and learning, their feelings of inclusion and test anxiety, and their self-efficacy related to engineering, math, and coping skills. The interviews provide information related to the student experience, feelings of inclusion, and program impact. Institutional data, combined with the survey and interview responses, are used to examine four research questions designed to examine the relationship of the elements of the AcES program to participants’ academic success and retention in engineering. Early analyses of the student retention data and survey responses from the 2017 and 2018 cohorts indicated students who ultimately left engineering before the start of their second year initially scored higher in areas of engineering self-efficacy and test anxiety, than those who stayed in engineering, while those who retained to the second year began their engineering education with lower self-efficacy scores, but higher scores related to the belief in the intrinsic value of engineering, learning strategy use, and coping self-efficacy. These results suggest that students who start with unrealistically high expectations of their performance leave engineering at higher rates than students who start with lower personal performance expectations, but have stronger value of the field and strategies for meeting challenges. These data appear to support the Kruger-Dunning effect in which students with limited knowledge of a specific field overestimate their abilities to perform in that area or underestimate the level of effort success may require. This paper will add an analysis of the academic success and retention data from 2019 cohort to this research, discuss the impact of COVID-19 to this program and research, as well as illuminate the quantitative results with the qualitative data from individual and focus group interviews regarding the aspects of the AcES program that impact student success, their expectations and methods for overcoming academic challenges, and their feelings of motivation and inclusion. 
    more » « less
  4. Alongside the continued evolution of the field of engineering education, the number of early career faculty members who identify as members of the discipline continues to increase. This growth has resulted in a new wave of roles, titles, and experiences for engineering education researchers, many of which have yet to be explored and understood. To address this gap, our research team is investigating the ways in which early career engineering education faculty are able to achieve impact in their current roles. Our aim is to provide insights on the ways in which these researchers can have new and evolving forms of impact within the engineering education field. The work presented herein explores the transition experiences of our research team, consisting of six early-career faculty, and the ways in which we experience agency at the individual, institutional, and field and societal levels. Doing so is necessary to consider the diverse backgrounds, visions, goals, plans, and commitments of early career faculty members. Guided by two qualitative research methodologies: collaborative inquiry and collaborative autoethnography, we are able to explore our lived experiences and respective academic cultures through iterative cycles of reflection and action towards agency. The poster presented will provide an update on our NSF RFE work through Phase 1 of our two phase investigation. Thus far the investigation has involved analysis of our reflections from the first two years of our faculty roles to identify critical incidents within the early career transition and development of our identities as faculty members. Additionally, we have collected reflective data to understand each of our goals, relevant aspects of our identity and desired areas of impact. Analysis of the transition has resulted in new insights on the aspects of transition, focusing on types of impactful situations, and the supports and strategies that are utilized. Analysis has begun to explore the role of identity on each members desired areas of impact and their ability to have impact. Data will also be presented from a survey of near peers, providing insight into the ways in which each early career engineering education faculty believe they are able to and desire to have impact in their current position. The collective analysis around the transition into a faculty role, strategic actions of new faculty, desired impact areas, and faculty identity will play a role in the development of our conceptual model of early career faculty agency. Additionally, this analysis provides the groundwork for phase two of our study, where we will seek to place the experiences of our group within the context of the larger community of early career engineering education faculty. 
    more » « less
  5. Alongside the continued evolution of the field of engineering education, the number of early career faculty members who identify as members of the discipline continues to increase. This growth has resulted in a new wave of roles, titles, and experiences for engineering education researchers, many of which have yet to be explored and understood. To address this gap, our research team is investigating the ways in which early career engineering education faculty are able to achieve impact in their current roles. Our aim is to provide insights on the ways in which these researchers can have new and evolving forms of impact within the engineering education field. The work presented herein explores the transition experiences of our research team, consisting of six early-career faculty, and the ways in which we experience agency at the individual, institutional, and field and societal levels. Doing so is necessary to consider the diverse backgrounds, visions, goals, plans, and commitments of early career faculty members. Guided by two qualitative research methodologies: collaborative inquiry and collaborative autoethnography, we are able to explore our lived experiences and respective academic cultures through iterative cycles of reflection and action towards agency. The poster presented will provide an update on our NSF RFE work through Phase 1 of our two phase investigation. Thus far the investigation has involved analysis of our reflections from the first two years of our faculty roles to identify critical incidents within the early career transition and development of our identities as faculty members. Additionally, we have collected reflective data to understand each of our goals, relevant aspects of our identity and desired areas of impact. Analysis of the transition has resulted in new insights on the aspects of transition, focusing on types of impactful situations, and the supports and strategies that are utilized. Analysis has begun to explore the role of identity on each members desired areas of impact and their ability to have impact. Data will also be presented from a survey of near peers, providing insight into the ways in which each early career engineering education faculty believe they are able to and desire to have impact in their current position. The collective analysis around the transition into a faculty role, strategic actions of new faculty, desired impact areas, and faculty identity will play a role in the development of our conceptual model of early career faculty agency. Additionally, this analysis provides the groundwork for phase two of our study, where we will seek to place the experiences of our group within the context of the larger community of early career engineering education faculty. 
    more » « less