An effective method to reduce ship drag is to supply air under specially profiled bottom with the purpose to decrease wetted surface area of the hull and thus its water resistance. Although such systems have been installed on some vessels, the broad implementation of this technique has not yet occurred. A major problem is how to sustain air lubrication in rough water. Modeling of air-ventilated flows is challenging, but modern computational fluid dynamics tools can provide valuable insight. In this study, a wide-beam, shallow-draft hull with a bottom air cavity is considered. This hull imitates a semi-planing boat that can be used for fast transportation of cargo from large marine vessels to shallow shores. To simulate fluid flow around this hull in calm water and head waves, as well as heave and pitch motions of the boat, CFD software Star-CCM+ has been employed. It is found that the air cavity effectiveness decreases in waves; vertical accelerations exhibit high-frequency oscillations; and heave, pitch and vertical accelerations increase, while time-averaged heave, pitch and added drag show non-monotonic behavior with increasing wave amplitude. The air-cavity hull also demonstrates substantially lower vertical accelerations in waves in comparison with a similar solid hull without bottommore »
Experimental Testing and Numerical Modeling of Small-Scale Boat With Drag-Reducing Air-Cavity System
Hydrodynamic performance of ships can be greatly improved by the formation of air cavities under ship bottom with the purpose to decrease water friction on the hull surface. The air-cavity ships using this type of drag reduction are usually designed for and typically effective only in a relatively narrow range of speeds and hull attitudes and sufficient rates of air supply to the cavity. To investigate the behavior of a small-scale air-cavity boat operating under both favorable and detrimental loading and speed conditions, a remotely controlled model hull was equipped with a data acquisition system, video camera and onboard sensors to measure air-cavity characteristics, air supply rate and the boat speed, thrust and trim in operations on open-water reservoirs. These measurements were captured by a data logger and also wirelessly transmitted to a ground station and video monitor. The experimental air-cavity boat was tested in a range of speeds corresponding to length Froude numbers between 0.17 and 0.5 under three loading conditions, resulting in near zero trim and significant bow-up and bow-down trim angles at rest. Reduced cavity size and significantly increased drag occurred when operating at higher speeds, especially in the bow-up trim condition. The other objective of this more »
- Award ID(s):
- 1800135
- Publication Date:
- NSF-PAR ID:
- 10338715
- Journal Name:
- ASME Fluids Engineering Division Summer Meeting FEDSM2021
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The drag reduction technique involving air cavities under ship hulls is a promising energy-saving technology. Understanding the air cavity dynamics in unsteady conditions and developing methods for the air cavity system optimization are critically important for practical implementation of this technology. In this study, a potential-flow theory is applied for modeling the air cavities under solid walls in water flow with fluctuating pressure. The present modeling approach incorporates detachment of macroscopic air pockets from the cavity tail. For specific configurations considered in this article, it is found that a change of the rate of air supply into the cavity can partly mitigate degradation of the overall power savings by the air cavity system in unsteady conditions.
-
Modern Information Technology (IT) servers are typically assumed to operate in quiescent conditions with almost zero static pressure differentials between inlet and exhaust. However, when operating in a data center containment system the IT equipment thermal status is a strong function of the non- homogenous environment of the air space, IT utilization workloads and the overall facility cooling system design. To implement a dynamic and interfaced cooling solution, the interdependencies of variabilities between the chassis, rack and room level must be determined. In this paper, the effect of positive as well as negative static pressure differential between inlet and outlet of servers on thermal performance, fan control schemes, the direction of air flow through the servers as well as fan energy consumption within a server is observed at the chassis level. In this study, a web server with internal air-flow paths segregated into two separate streams, each having dedicated fan/group of fans within the chassis, is operated over a range of static pressure differential across the server. Experiments were conducted to observe the steady-state temperatures of CPUs and fan power consumption. Furthermore, the server fan speed control scheme’s transient response to a typical peak in IT computational workload while operatingmore »
-
The unstretched laminar flame speed (LFS) plays a key role in engine models and predictions of flame propagation. It is also an essential parameter in the study of turbulent combustion and can be directly used in many turbulent combustion models. Therefore, it is important to predict the laminar flame speed accurately and efficiently. Two improved correlations for the unstretched laminar flame speed, namely improved power law and improved Arrhenius form correlations, are proposed for iso-octane/air mixtures in this study, using simulated results for typical operating conditions for spark-ignition engines: unburned temperatures of 300-950 K, pressures of 1-120 bar, and equivalence ratios of 0.6-1.5. The original data points used to develop the new correlations were obtained using the detailed combustion kinetics for iso-octane from Lawrence Livermore National Laboratory (LLNL). The three coefficients in the improved power law correlation were determined using a methodology different from previous approaches. The improved Arrhenius form correlation employs a function of unburned gas temperature to replace the flame temperature, making the expression briefer and making the coefficients easier to calculate. The improved Arrhenius method is able to predict the trends and the values of laminar flame speed with improved accuracy over a larger range of operatingmore »
-
As far as plastron is sustained, superhydrophobic (SHPo) surfaces are expected to reduce skin-friction drag in any flow conditions including large-scale turbulent boundary-layer flows of marine vessels. However, despite many successful drag reductions reported using laboratory facilities, the plastron on SHPo surfaces was persistently lost in high-Reynolds-number flows on open water, and no reduction has been reported until a recent study using certain microtrench SHPo surfaces underneath a boat (Xu et al., Phys. Rev. Appl. , vol. 13, no. 3, 2020, 034056). Since scientific studies with controlled flows are difficult with a boat on ocean water, in this paper we test similar SHPo surfaces in a high-speed towing tank, which provides well-controlled open-water flows, by developing a novel $0.7\ \textrm {m} \times 1.4\ \textrm {m}$ towing plate, which subjects a $4\ \textrm {cm} \times 7\ \textrm {cm}$ sample to the high-Reynolds-number flows of the plate. In addition to the 7 cm long microtrenches, trenches divided into two in length are also tested and reveal an improvement. The skin-friction drag ratio relative to a smooth surface is found to be decreasing with increasing Reynolds number, down to 73 % (i.e. 27 % drag reduction) at $Re_x\sim 8\times 10^6$ , before starting to increasemore »