skip to main content


Title: Perspectives on Clustering and Declustering of Earthquakes
Abstract Clustering is a fundamental feature of earthquakes that impacts basic and applied analyses of seismicity. Events included in the existing short-duration instrumental catalogs are concentrated strongly within a very small fraction of the space–time volume, which is highly amplified by activity associated with the largest recorded events. The earthquakes that are included in instrumental catalogs are unlikely to be fully representative of the long-term behavior of regional seismicity. We illustrate this and other aspects of space–time earthquake clustering, and propose a quantitative clustering measure based on the receiver operating characteristic diagram. The proposed approach allows eliminating effects of marginal space and time inhomogeneities related to the geometry of the fault network and regionwide changes in earthquake rates, and quantifying coupled space–time variations that include aftershocks, swarms, and other forms of clusters. The proposed measure is used to quantify and compare earthquake clustering in southern California, western United States, central and eastern United States, Alaska, Japan, and epidemic-type aftershock sequence model results. All examined cases show a high degree of coupled space–time clustering, with the marginal space clustering dominating the marginal time clustering. Declustering earthquake catalogs can help clarify long-term aspects of regional seismicity and increase the signal-to-noise ratio of effects that are subtler than the strong clustering signatures. We illustrate how the high coupled space–time clustering can be decreased or removed using a data-adaptive parsimonious nearest-neighbor declustering approach, and emphasize basic unresolved issues on the proper outcome and quality metrics of declustering. At present, declustering remains an exploratory tool, rather than a rigorous optimization problem, and selecting an appropriate declustering method should depend on the data and problem at hand.  more » « less
Award ID(s):
1723033 1722561
NSF-PAR ID:
10338873
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
93
Issue:
1
ISSN:
0895-0695
Page Range / eLocation ID:
386 to 401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We introduce an algorithm for declustering earthquake catalogs based on the nearest‐neighbor analysis of seismicity. The algorithm discriminates between background and clustered events by random thinning that removes events according to a space‐varying threshold. The threshold is estimated using randomized‐reshuffled catalogs that are stationary, have independent space and time components, and preserve the space distribution of the original catalog. Analysis of catalog produced by the Epidemic Type Aftershock Sequence model demonstrates that the algorithm correctly classifies over 80% of background and clustered events, correctly reconstructs the stationary and space‐dependent background intensity, and shows high stability with respect to random realizations (over 75% of events have the same estimated type in over 90% of random realizations). The declustering algorithm is applied to the global Northern California Earthquake Data Center catalog with magnitudesm≥ 4 during 2000–2015; a Southern California catalog withm≥ 2.5, 3.5 during 1981–2017; an area around the 1992 Landers rupture zone withm≥ 0.0 during 1981–2015; and the Parkfield segment of San Andreas fault withm≥ 1.0 during 1984–2014. The null hypotheses of stationarity and space‐time independence are not rejected by several tests applied to the estimated background events of the global and Southern California catalogs with magnitude ranges Δm< 4. However, both hypotheses are rejected for catalogs with larger range of magnitudes Δm> 4. The deviations from the nulls are mainly due to local temporal fluctuations of seismicity and activity switching among subregions; they can be traced back to the original catalogs and represent genuine features of background seismicity.

     
    more » « less
  2. Abstract Measures of foreshock occurrence are systematically examined using earthquake catalogs for eight regions (Italy, southern California, northern California, Costa Rica, Onshore Japan, Alaska, Turkey, and Greece) after imposing a magnitude ≥3.0 completeness level. Foreshocks are identified using three approaches: a magnitude-dependent space + fixed-time windowing method, a nearest-neighbor clustering method, and a modified magnitude-dependent space + variable-time windowing method. The method with fixed-time windows systematically yields higher counts of foreshocks than the other two clustering methods. We find similar counts of foreshocks across the three methods when the magnitude aperture is equalized by including only earthquakes in the magnitude range M*−2≤ M< M*, in which M* is the mainshock magnitude. For most of the catalogs (excluding Italy and southern California), the measured b-values of the foreshocks of all region-specific mainshocks are lower by 0.1–0.2 than b-values of respective aftershocks. Allowing for variable-time windows results in relatively high probabilities of having at least one foreshock in Italy (∼43%–56%), compared to other regional catalogs. Foreshock probabilities decrease to 14%–41% for regions such as Turkey, Greece, and Costa Rica. Similar trends are found when requiring at least five foreshocks in a sequence to be considered. Estimates of foreshock probabilities for each mainshock are method dependent; however, consistent regional trends exist regardless of method, with regions such as Italy and southern California producing more observable foreshocks than Turkey and Greece. Some regions with relatively high background seismicity have comparatively low probabilities of detectable foreshock activity when using methods that account for variable background, possibly due to depletion of near-failure fault conditions by background activity. 
    more » « less
  3. null (Ed.)
    Exploring the spatiotemporal distribution of earthquake activity, especially earthquake migration of fault systems, can greatly to understand the basic mechanics of earthquakes and the assessment of earthquake risk. By establishing a three-dimensional strike-slip fault model, to derive the stress response and fault slip along the fault under regional stress conditions. Our study helps to create a long-term, complete earthquake catalog. We modelled Long-Short Term Memory (LSTM) networks for pattern recognition of the synthetical earthquake catalog. The performance of the models was compared using the mean-square error (MSE). Our results showed clearly the application of LSTM showed a meaningful result of 0.08% in the MSE values. Our best model can predict the time and magnitude of the earthquakes with a magnitude greater than Mw = 6.5 with a similar clustering period. These results showed conclusively that applying LSTM in a spatiotemporal series prediction provides a potential application in the study of earthquake mechanics and forecasting of major earthquake events. 
    more » « less
  4. Abstract

    Central and eastern United States (CEUS) have experienced large intraplate earthquakes. Yet, at present there is no comprehensive model to explain stresses, strain, and seismicity in this intraplate setting. Models to explain the intraplate stresses in CEUS include glacio‐isostatic adjustment, ridge push effects, local stresses along preexisting fracture zones, and large‐scale convection. In this paper, we present a self‐consistent model of the dynamics of CEUS that explains the stress field responsible for these intraplate earthquakes. The earthquakes represent slow, ongoing deformation associated with forces arising from a combination of lithosphere topography and structure, together with the effects of density‐driven mantle flow. Using GPS data, we calculate strain rates that are likely to arise from tectonic effects and conclude that intraplate strain rates associated with tectonic effects are unlikely to exceed 1 × 10−9 year−1. We test several models of lateral viscosity variations by comparing model stress orientation output with earthquake moment tensors,directions from stress inversion, andPaxes of earthquakes. A model that satisfies stress and earthquake constraints and also strain rate magnitude constraints requires high viscosity (1025 Pa·s) craton and old oceanic lithosphere of the western Atlantic block and weaker (5 × 1024 Pa·s) accreted Appalachian terrane. Other strength contrasts within the lithosphere are likely present. Incorporation of these into future models using constraints from seismology, along with refined geodetic measurements and improved estimates of crust and upper mantle densities, is needed to further refine long‐term dynamic models and better evaluate the hazards associated with this very slow, ongoing permanent deformation within the eastern and central United States.

     
    more » « less
  5. Faults are usually surrounded by damage zones associated with localized deformation. Here we use fully dynamic earthquake cycle simulations to quantify the behaviors of earthquakes in fault damage zones. We show that fault damage zones can make a significant contribution to the spatial and temporal seismicity distribution. Fault stress heterogeneities generated by fault zone waves persist over multiple earthquake cycles that, in turn, produce small earthquakes that are absent in homogeneous simulations with the same friction conditions. Shallow fault zones can produce a bimodal depth distribution of earthquakes with clustering of seismicity at both shallower and deeper depths. Fault zone healing during the interseismic period also promotes the penetration of aseismic slip into the locked region and reduces the sizes of fault asperities that host earthquakes. Hence, small and moderate subsurface earthquakes with irregular recurrence intervals are commonly observed in immature fault zone simulations with interseismic healing. To link our simulation results to geological observations, we will use simulated fault slip at different depths to infer the timing and recurrence intervals of earthquakes and discuss how such measurements can affect our understanding of earthquake behaviors. We will also show that the maturity and material properties of fault damage zones have strong influence on whether long-term earthquake characteristics are represented by single events. 
    more » « less