null
(Ed.)
9-Anthracene carboxylic acid derivatives comprise a family of thermally reversible photomechanical molecular crystals. The photomechanical response relies on a [4 + 4] photodimerization followed by dissociation that occurs on timescales of seconds to minutes. A combined theoretical and experimental investigation is undertaken to better understand how chemical modification of the anthracene core influences energetics of both the isolated molecule and the crystal lattice. We use both density functional theory and dispersion-corrected Moller–Plesset perturbation theory computational methods to establish orbital energies, photodimerization reaction energies, and lattice energies for a set of substituted 9-anthracene carboxylic acid molecules. The calculations reveal that steric interactions play a dominant role in the ability to form photodimers and indicate an energetic threshold of 80–90 kJ per mole for the dimerization reaction. Examination of intermolecular bonding in a subset of fluorinated 9ACs revealed the absence of H⋯F intermolecular bond formation and energy differences that can explain observed trends in the dissociation kinetics and mechanical reset times. Fluorescence recovery after photobleaching experiments shows that the photodimer dissociation kinetics depend on the amount of initial photodimer, preventing a straightforward correlation between halogen atom substitution and dissociation rates using the Bell–Evans–Polanyi principle. The results clarify how molecular structure affects intermolecular interactions and photoreactivity in this family of molecular crystals, but the origin of the complex photodimer dissociation dynamics remains an open question.
more »
« less