skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radiative Association between Neutral Radicals in the Interstellar Medium: CH3 + CH3O
Uncertainties in the production mechanisms of interstellar complex organic molecules call for a precise investigation of gas-phase synthetic routes for these molecules, especially at low temperatures. Here, we report a study of the gas-phase formation of dimethyl ether from the neutral radicals methyl and methoxy via the process of radiative association. This process may be important to synthesize dimethyl ether and species such as methyl formate, for which dimethyl ether is a precursor. The reaction is found to be rapid by the standards of radiative association, especially at 10 K, where its rate coefficient is calculated by two different methods to be 3 × 10−11 or 2 × 10−10 cm3 s−1; the lower rate is calculated with a more precise theory and is likely more accurate. Insertion of this reaction into the Nautilus network is found not to explain fully the abundance of dimethyl ether in cold and prestellar cores, especially in those cores with the highest dimethyl ether abundances.  more » « less
Award ID(s):
1906489
PAR ID:
10339092
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The astrophysical journal
Volume:
922
Issue:
2
ISSN:
2041-8213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cold ($$\sim$$10 K) and dense ($$\sim 10^{5}$$ cm$$^{-3}$$) cores of gas and dust within molecular clouds, known as starless and dynamically evolved pre-stellar cores, are the birthplaces of low-mass (M$$\le$$ few M$$_\odot$$) stars. As detections of interstellar complex organic molecules, or COMs, in starless cores has increased, abundance comparisons suggest that some COMs might be seeded early in the star formation process and inherited to later stages (i.e. protostellar discs and eventually comets). To date observations of COMs in starless cores have been limited, with most detections reported solely in the Taurus molecular cloud. It is therefore still a question whether different environments affect abundances. We have surveyed 35 starless and pre-stellar cores in the Perseus molecular cloud with the Arizona Radio Observatory (ARO) 12 m telescope detecting both methanol, CH$$_3$$OH, and acetaldehyde, CH$$_3$$CHO, in 100 per cent and 49 per cent of the sample, respectively. In the sub-sample of 15 cores where CH$$_3$$CHO was detected at $$\gt 3\sigma$$ ($$\sim$$18 mK) with the ARO 12 m, follow-up observations with the Yebes 40 m telescope were carried out. Detections of formic acid, t-HCOOH, ketene, H$$_2$$CCO, methyl cyanide, CH$$_3$$CN, vinyl cyanide, CH$$_2$$CHCN, methyl formate, HCOOCH$$_3$$, and dimethyl ether, CH$$_3$$OCH$$_3$$, are seen in at least 20 per cent of the cores. We discuss detection statistics, calculate column densities, and compare abundances across various stages of low-mass star formation. Our findings have more than doubled COM detection statistics in cold cores and show COMs are prevalent in the gas before star and planet formation in the Perseus molecular cloud. 
    more » « less
  2. ABSTRACT Determining the level of chemical complexity within dense starless and gravitationally bound pre-stellar cores is crucial for constructing chemical models, which subsequently constrain the initial chemical conditions of star formation. We have searched for complex organic molecules (COMs) in the young starless core L1521E, and report the first clear detection of dimethyl ether (CH3OCH3), methyl formate (HCOOCH3), and vinyl cyanide (CH2CHCN). Eight transitions of acetaldehyde (CH3CHO) were also detected, five of which (A states) were used to determine an excitation temperature to then calculate column densities for the other oxygen-bearing COMs. If source size was not taken into account (i.e. if filling fraction was assumed to be one), column density was underestimated, and thus we stress the need for higher resolution mapping data. We calculated L1521E COM abundances and compared them to other stages of low-mass star formation, also finding similarities to other starless/pre-stellar cores, suggesting related chemical evolution. The scenario that assumes formation of COMs in gas-phase reactions between precursors formed on grains and then ejected to the cold gas via reactive desorption was tested and was unable to reproduce observed COM abundances, with the exception of CH3CHO. These results suggest that COMs observed in cold gas are formed not by gas-phase reactions alone, but also through surface reactions on interstellar grains. Our observations present a new, unique challenge for existing theoretical astrochemical models. 
    more » « less
  3. Abstract The gas phase reaction of the ground state cyano‐radical (CN (X2+)) with 2‐methylfuran (2‐MF) is investigated in a quasi‐static reaction cell at pressures ranging from 2.2 to 7.6 Torr and temperatures ranging from 304 to 440 K. The CN radicals are generated in their ground electronic state by pulsed laser photolysis of gaseous cyanogen iodide (ICN) at 266 nm. Their concentration is monitored as a function of reaction time using laser‐induced fluorescence at 387.3 nm on the B2+(ν′ = 0) ← X2+(ν″ = 0) vibronic band. The reaction rate coefficient is found to be rapid and independent of pressure and temperature. Over the investigated temperature and pressure ranges, the rate coefficient is measured to be 2.83 (± 0.18) × 10−10cm3molecules s−1. The enthalpies of the stationary points and transition states on the CN + 2‐MF potential energy surface are calculated using the CBS‐QB3 computational method. The kinetic results suggest the lack of a prereactive complex on the reaction entrance channel with either a very small or nonexistent entrance energy barrier. In addition, the potential energy surface calculations reveal only submerged barriers along the minimum energy path. Based on comparisons between previous CN reactions with unsaturated hydrocarbons, the most likely reaction pathway is CN addition onto one of the unsaturated carbons followed by either H or methyl elimination. The implications for the transformation of biomass‐derived fuels in nitrogen‐rich flames is discussed. 
    more » « less
  4. null (Ed.)
    ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b. 
    more » « less
  5. We investigate the gas-phase photo-oxidation of 2-ethoxyethanol (2-EE) initiated by the OH radical with a focus on its autoxidation pathways. Gas-phase autoxidation intramolecular H-shifts followed by O2 additionhas recently been recognized as a major atmospheric chemical pathway that leads to the formation of highly oxygenated organic molecules (HOMs), which are important precursors for secondary organic aerosols (SOAs). Here, we examine the gas-phase oxidation pathways of 2-EE, a model compound for glycol ethers, an important class of volatile organic compounds (VOCs) used in volatile chemical products (VCPs). Both experimental and computational techniques are applied to analyze the photochemistry of the compound. We identify oxidation products from both bimolecular and autoxidation reactions from chamber experiments at varied HO2 levels and provide estimations of rate coefficients and product branching ratios for key reaction pathways. The H-shift processes of 2-EE peroxy radicals (RO2) are found to be sufficiently fast to compete with bimolecular reactions under modest NO/HO2 conditions. More than 30% of the produced RO2 are expected to undergo at least one H-shift for conditions typical of modern summer urban atmosphere, where RO2 bimolecular lifetime is becoming >10 s, which implies the potential for glycol ether oxidation to produce considerable amounts of HOMs at reduced NOx levels and elevated temperature. Understanding the gas-phase autoxidation of glycol ethers can help fill the knowledge gap in the formation of SOA derived from oxygenated VOCs emitted from VCP sources. 
    more » « less