We propose and investigate the application of alternative enriched test spaces in the discontinuous Petrov–Galerkin (DPG) finite element framework for singular perturbation linear problems, with an emphasis on 2D convection-dominated diffusion. Providing robust L2 error estimates for the field variables is considered a convenient feature for this class of problems, since this normwould not account for the large gradients present in boundary layers. With this requirement in mind, Demkowicz and others have previously formulated special test norms, which through DPG deliver the desired L2 convergence. However, robustness has only been verified through numerical experiments for tailored test normswhich are problem-specific,whereas the quasi-optimal test norm (not problem specific) has failed such tests due to the difficulty to resolve the optimal test functions sought in the DPG technology. To address this issue (i.e. improve optimal test functions resolution for the quasi-optimal test norm), we propose to discretize the local test spaces with functions that depend on the perturbation parameter ϵ. Explicitly,wework with B-spline spaces defined on an ϵ-dependent Shishkin submesh. Two examples are run using adaptive h-refinement to compare the performance of proposed test spaces with that of standard test spaces. We also include a modified norm and a continuation strategy aiming to improve time performance and briefly experiment with these ideas.
more »
« less
An Lp-DPG Method with Application to 2D Convection-Diffusion Problems
This article summarizes the Lp-DPG method presented in [18], where only 1D convection-diffusion problems are solved.We apply the same computational techniques to 2D convection-diffusion problems and report additional numerical results herein. Furthermore, we propose an Lp-DPG method with variable p and illustrate it with numerical experiments.
more »
« less
- Award ID(s):
- 1819101
- PAR ID:
- 10339105
- Date Published:
- Journal Name:
- Computational methods in applied mathematics
- Volume:
- 22
- Issue:
- 3
- ISSN:
- 1609-4840
- Page Range / eLocation ID:
- 649–662
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Following Muga and van der Zee (Muga and van der Zee, 2015), we generalize the standard Discontinuous Petrov–Galerkin (DPG) method, based on Hilbert spaces, to Banach spaces. Numerical experiments using model 1D convection-dominated diffusionproblem are performed and compared with Hilbert setting. It is shown that Banach basedmethod gives solutions less susceptible to Gibbs phenomenon. h-adaptivity is implemented with the help of the error representation function as error indicator.more » « less
-
Wave propagation is fundamental to applications including natural resource exploration, nuclear fusion research, and military defense, among others. However, developing accurate and efficient numerical algorithms for solving time-harmonic wave propagation problems is notoriously difficult. One difficulty is that classical discretization techniques (e.g., Galerkin finite elements, finite difference, etc.) yield indefinite discrete systems that preclude the use of many scalable solution algorithms. Significant progress has been made to develop specialized preconditioners for high-frequency wave propagation problems but robust and scalable solvers for general problems, including non-homogenous media and complex geometries, remain elusive. An alternative approach is to use minimum residual discretization methods—that yield Hermitian positive-definite discrete systems—and may be amenable to more standard preconditioners. Indeed, popularization of the first-order system least-squares methodology (FOSLS) was driven by the applicability of geometric and algebraic multigrid to otherwise indefinite problems. However, for wave propagation problems, FOSLS is known to be highly dissipative and is thus less competitive in the high-frequency regime. The discontinuous Petrov–Galerkin (DPG) method of Demkowicz and Gopalakrishnan is a minimum residual finite element method with several additional attractive properties: mesh-independent stability, a built-in error indicator, and applicability to a number of variational formulations. In the context of high-frequency wave propagation, the ultraweak DPG formulation has been observed to produce pollution error roughly commensurate to Galerkin discretizations. DPG discretizations may thus deliver accuracy typical of classical discretization techniques, but result in Hermitian positive-definite discrete systems that are often more amenable to preconditioning. A multigrid preconditioner for DPG systems, developed in the dissertation work of S. Petrides, was shown to scale efficiently in a shared-memory implementation. The primary objective of this dissertation is development of an efficient, distributed implementation of the DPG multigrid solver (DPG-MG). The distributed DPG-MG solver developed in this work will be demonstrated to be massively scalable, enabling solution of three-dimensional problems with O(10¹²) degrees of freedom on up to 460 000 CPU cores, an unprecedented scale for high-frequency wave propagation. The scalability of the DPG-MG solver will be further combined with hp-adaptivity to enable efficient solution of challenging real-world high-frequency wave propagation problems including optical fiber modeling, simulation of RF heating in tokamak devices, and seismic simulation. These applications include complex three-dimensional geometries, heterogeneous and anisotropic media, and localized features; demonstrating the robustness and versatility of the solver and tools developed in this dissertation.more » « less
-
The discontinuous Petrov–Galerkin (DPG) method is a Petrov–Galerkin finite element method with test functions designed for obtaining stability. These test functions are computable locally, element by element, and are motivated by optimal test functions which attain the supremum in an inf-sup condition. A profound consequence of the use of nearly optimal test functions is that the DPG method can inherit the stability of the (undiscretized) variational formulation, be it coercive or not. This paper combines a presentation of the fundamentals of the DPG ideas with a review of the ongoing research on theory and applications of the DPG methodology. The scope of the presented theory is restricted to linear problems on Hilbert spaces, but pointers to extensions are provided. Multiple viewpoints to the basic theory are provided. They show that the DPG method is equivalent to a method which minimizes a residual in a dual norm, as well as to a mixed method where one solution component is an approximate error representation function. Being a residual minimization method, the DPG method yields Hermitian positive definite stiffness matrix systems even for non-self-adjoint boundary value problems. Having a built-in error representation, the method has the out-of-the-box feature that it can immediately be used in automatic adaptive algorithms. Contrary to standard Galerkin methods, which are uninformed about test and trial norms, the DPG method must be equipped with a concrete test norm which enters the computations. Of particular interest are variational formulations in which one can tailor the norm to obtain robust stability. Key techniques to rigorously prove convergence of DPG schemes, including construction of Fortin operators, which in the DPG case can be done element by element, are discussed in detail. Pointers to open frontiers are presented.more » « less
-
We consider a model convection-diffusion problem and present our recent analysis and numerical results regarding mixed finite element formulation and discretization in the singular perturbed case when the convection term dominates the problem. Using the concepts of optimal norm and saddle point reformulation, we found new error estimates for the case of uniform meshes. We compare the standard linear Galerkin discretization to a saddle point least square discretization that uses quadratic test functions, and explain the non-physical oscillations of the discrete solutions. We also relate a known upwinding Petrov–Galerkin method and the stream-line diffusion discretization method, by emphasizing the resulting linear systems and by comparing appropriate error norms. The results can be extended to the multidimensional case in order to find efficient approximations for more general singular perturbed problems including convection dominated models.more » « less
An official website of the United States government

