skip to main content

Title: High-Performance and Energy-Efficient 3D Manycore GPU Architecture for Accelerating Graph Analytics
Recent advances in GPU-based manycore accelerators provide the opportunity to efficiently process large-scale graphs on chip. However, real world graphs have a diverse range of topology and connectivity patterns (e.g., degree distributions) that make the design of input-agnostic hardware architectures a challenge. Network-on-Chip (NoC)- based architectures provide a way to overcome this challenge as the architectural topology can be used to approximately model the expected traffic patterns that emerge from graph application workloads. In this paper, we first study the mix of long- and short-range traffic patterns generated on-chip using graph workloads, and subsequently use the findings to adapt the design of an optimal NoC-based architecture. In particular, by leveraging emerging three-dimensional (3D) integration technology, we propose design of a small-world NoC (SWNoC)- enabled manycore GPU architecture, where the placement of the links connecting the streaming multiprocessors (SM) and the memory controllers (MC) follow a power-law distribution. The proposed 3D manycore GPU architecture outperforms the traditional planar (2D) counterparts in both performance and energy consumption. Moreover, by adopting a joint performance-thermal optimization strategy, we address the thermal concerns in a 3D design without noticeably compromising the achievable performance. The 3D integration technology is also leveraged to incorporate Near Data Processing more » (NDP) to complement the performance benefits introduced by the SWNoC architecture. As graph applications are inherently memory intensive, off-chip data movement gives rise to latency and energy overheads in the presence of external DRAM. In conventional GPU architectures, as the main memory layer is not integrated with the logic, off-chip data movement negatively impacts overall performance and energy consumption. We demonstrate that NDP significantly reduces the overheads associated with such frequent and irregular memory accesses in graph-based applications. The proposed SWNoC-enabled NDP framework that integrates 3D memory (like Micron's HMC) with a massive number of GPU cores achieves 29.5% performance improvement and 30.03% less energy consumption on average compared to a conventional planar Mesh-based design with external DRAM. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
ACM Journal on Emerging Technologies in Computing Systems
Page Range or eLocation-ID:
1 to 19
Sponsoring Org:
National Science Foundation
More Like this
  1. Manycore GPU architectures have become the mainstay for accelerating graph computations. One of the primary bottlenecks to performance of graph computations on manycore architectures is the data movement. Since most of the accesses in graph processing are due to vertex neighborhood lookups, locality in graph data structures plays a key role in dictating the degree of data movement. Vertex reordering is a widely used technique to improve data locality within graph data structures. However, these reordering schemes alone are not sufficient as they need to be complemented with efficient task allocation on manycore GPU architectures to reduce latency due to local cache misses. Consequently, in this article, we introduce a software/hardware co-design framework for accelerating graph computations. Our approach couples an architecture-aware vertex reordering with a priority-based task allocation technique. As the task allocation aims to reduce on-chip latency and associated energy, the choice of Network-on-Chip (NoC) as the communication backbone in the manycore platform is an important parameter. By leveraging emerging three-dimensional (3D) integration technology, we propose design of a small-world NoC (SWNoC)-enabled manycore GPU architecture, where the placement of the links connecting the streaming multiprocessors (SMs) and the memory controllers (MCs) follow a power-law distribution. The proposed 3Dmore »SWNoC-enabled software/hardware co-design framework achieves 11.1% to 22.9% performance improvement and 16.4% to 32.6% less energy consumption depending on the dataset and the graph application, when compared to the default order of dataset running on a conventional planar mesh architecture.« less
  2. Graph application workloads are dominated by random memory accesses with poor locality. To tackle the irregular and sparse nature of computation, ReRAM-based Processing-in-Memory (PIM) architectures have been proposed recently. Most of these ReRAM architecture designs have focused on mapping graph computations into a set of multiply-and-accumulate (MAC) operations. ReRAMs also offer a key advantage in reducing memory latency between cores and memory by allowing for processing-in-memory (PIM). However, when implemented on a ReRAM-based manycore architecture, graph applications still pose two key challenges – significant storage requirements (particularly due to wasted zero cell storage), and significant amount of on-chip traffic. To tackle these two challenges, in this paper we propose the design of a 3D NoC-enabled ReRAM-based manycore architecture. Our proposed architecture incorporates a novel crossbar-aware node reordering to reduce ReRAM storage requirements. Secondly, its 3D NoC-enabled design reduces on-chip communication latency. Our architecture outperforms the state-of-the-art in ReRAM-based graph acceleration by up to 5x in performance while consuming up to 10.3x less energy for a range of graph inputs and workloads.
  3. The increased computational capability in heterogeneous manycore architectures facilitates the concurrent execution of many applications. This requires, among other things, a flexible, high-performance, and energy-efficient communication fabric capable of handling a variety of traffic patterns needed for running multiple applications at the same time. Such stringent requirements are posing a major challenge for current Network-on-Chips (NoCs) design. In this paper, we propose Adapt-NoC, a flexible NoC architecture, along with a reinforcement learning (RL)-based control policy, that can provide efficient communication support for concurrent application execution. Adapt-NoC can dynamically allocate several disjoint regions of the NoC, called subNoCs, with different sizes and locations for the concurrently running applications. Each of the dynamically-allocated subNoCs is capable of adapting to a given topology such as a mesh, cmesh, torus, or tree thus tailoring the topology to satisfy application’s needs in terms of performance and power consumption. Moreover, we explore the use of RL to design an efficient control policy which optimizes the subNoC topology selection for a given application. As such, Adapt-NoC can not only provide several topology choices for concurrently running applications, but can also optimize the selection of the most suitable topology for a given application with the aim of improvingmore »performance and energy efficiency. We evaluate Adapt-NoC using both GPU and CPU benchmark suites. Simulation results show that the proposed Adapt-NoC can achieve up to 34% latency reduction, 10% overall execution time reduction and 53% NoC energy-efficiency improvement when compared to prior work.« less
  4. Heterogeneous manycore architectures are deployed to simultaneously run multiple and diverse applications. This requires various computing capabilities (CPUs, GPUs, and accelerators), and an efficient network-on-chip (NoC) architecture to concurrently handle diverse application communication behavior. However, supporting the concurrent communication requirements of diverse applications is challenging due to the dynamic application mapping, the complexity of handling distinct communication patterns and limited on-chip resources. In this paper, we propose Adapt-NoC, a versatile and flexible NoC architecture for chiplet-based manycore architectures, consisting of adaptable routers and links. Adapt-NoC can dynamically allocate disjoint regions of the NoC, called subNoCs, for concurrently-running applications, each of which can be optimized for different communication behavior. The adaptable routers and links are capable of providing various subNoC topologies, satisfying different latency and bandwidth requirements of various traffic patterns (e.g. all-to-all, one-to-many). Full system simulation shows that AdaptNoC can achieve 31% latency reduction, 24% energy saving and 10% execution time reduction on average, when compared to prior designs.
  5. Recent advances in memory architectures have provoked renewed interest in near-data-processing (NDP) as way to alleviate the "memory wall" problem. An NDP architecture places logic circuits, such as simple processors, in close proximity to memory. Effective use of NDP architectures requires rethinking data structures and their algorithms. Here, we provide an empirical evaluation of several NDP-aware algorithms for general-purpose concurrent data structures such as linked-lists, skiplists, and FIFO queues. The empirical analysis reveals that the potential benefits of NDP-based concurrent data structures are less than what had been expected in earlier studies. In turn, we introduce lightweight NDP hardware modifications, inspired by initial observations on data access patterns and underlying DRAM activity. Even the minimal changes to hardware significantly improve the performance and energy consumption of NDP-based concurrent data structures, and in many cases, the resulting data structures outperform state-of-the-art concurrent data structures.