- NSF-PAR ID:
- 10339163
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored bacterial lineages have provided invaluable insights into the metabolic capabilities and ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil and non-soil habitats, to examine the metabolic capabilities and ecological role of members of the family UBA6911 (group18) Acidobacteria. The analyzed genomes clustered into five distinct genera, with genera Gp18_AA60 and QHZH01 recovered from soils, genus Ga0209509 from anaerobic digestors, and genera Ga0212092 and UBA6911 from freshwater habitats. All genomes analyzed suggested that members of Acidobacteria group 18 are metabolically versatile heterotrophs capable of utilizing a wide range of proteins, amino acids, and sugars as carbon sources, possess respiratory and fermentative capacities, and display few auxotrophies. Soil-dwelling genera were characterized by larger genome sizes, higher number of CRISPR loci, an expanded carbohydrate active enzyme (CAZyme) machinery enabling de-branching of specific sugars from polymers, possession of a C1 (methanol and methylamine) degradation machinery, and a sole dependence on aerobic respiration. In contrast, non-soil genomes encoded a more versatile respiratory capacity for oxygen, nitrite, sulfate, trimethylamine N-oxide (TMAO) respiration, as well as the potential for utilizing the Wood Ljungdahl (WL) pathway as an electron sink during heterotrophic growth. Our results not only expand our knowledge of the metabolism of a yet-uncultured bacterial lineage, but also provide interesting clues on how terrestrialization and niche adaptation drives metabolic specialization within the Acidobacteria.more » « less
-
Abstract We report on the tunable and enhanced dielectric properties of tungsten (W) incorporated gallium oxide (Ga2O3) polycrystalline electroceramics for energy and power electronic device applications. The W‐incorporated Ga2O3(Ga2−2xWxO3, 0.00 ≤ x ≤ 0.20; GWO) compounds were synthesized by the high‐temperature solid‐state chemical reaction method by varying the W‐content. The fundamental aspects of the dielectric properties in correlation with the crystal structure, phase, and microstructure of the GWO polycrystalline compounds has been investigated in detail. A detailed study performed ascertains the W‐induced changes in the dielectric constant, loss tangent (tan
δ ) and ac conductivity. It was found that the dielectric constant increases with addition of W in the system as a function of temperature (25°C‐500°C). Frequency dependence (102‐106 Hz) of the dielectric constant follows the modified Debye model with a relaxation time of ∼20 to 90 μs and a spreading factor of 0.39 to 0.65. The dielectric constant of GWO is temperature independent almost until ∼300°C, and then increases rapidly in the range of 300°C to 500°C. W‐induced enhancement in the dielectric constant of GWO is fully evident in the frequency and temperature dependent dielectric studies. The frequency and temperature dependent tanδ reveals the typical behavior of relaxation loses in GWO. Small polaron hopping mechanism is evident in the frequency dependent electrical transport properties of GWO. The remarkable effect of W‐incorporation on the dielectric and electrical transport properties of Ga2O3is explained by a two‐layer heterogeneous model consisting of thick grains separated by very thin grain boundaries along with the formation of a Ga2O3‐WO3composite was able to account for the observed temperature and frequency dependent electrical properties in GWO. The results demonstrate that the structure, electrical and dielectric properties can be tailored by tuning W‐content in the GWO compounds. -
Two-dimensional transition metal carbides, nitrides, and carbonitrides, known as MXenes, hold potential in electrocatalytic applications. Tungsten (W) based-MXenes are of particular interest as they are predicted to have low overpotentials in hydrogen evolution reaction (HER). However, incorporating W into the MXene structure has proven difficult due to the calculated instability of its hypothetical MAX precursors. In this study, we present a theory-guided synthesis of a W-containing MXene, W2TiC2Tx, derived from a non-MAX nanolaminated ternary carbide (W,Ti)4C4-y precursor by selective etching of one of the covalently bonded tungsten layers. Our results indicate the importance of W and Ti ordering and the presence of vacancy defects for the successful selective etching of the precursor. We confirm the atomistic out-of-plane ordering of W and Ti using density functional theory, Rietveld refinement, and electron microscopy methods. Additionally, the W-rich basal plane endows W2TiC2Tx MXene with a remarkable HER overpotential (~144 mV at 10 mA/cm2). This study adds a tungsten-containing MXene made from a covalently bonded non-MAX phase opening more ways to synthesize novel 2D materials.
-
Zhang, Jianzhi (Ed.)Abstract The amplification and diversification of genes into large multi-gene families often mark key evolutionary innovations, but this process often creates genetic redundancy that hinders functional investigations. When the model budding yeast Saccharomyces cerevisiae transitions to anaerobic growth conditions, the cell massively induces the expression of seven serine/threonine-rich anaerobically-induced cell wall mannoproteins (anCWMPs): TIP1, TIR1, TIR2, TIR3, TIR4, DAN1, and DAN4. Here, we show that these genes likely derive evolutionarily from a single ancestral anCWMP locus, which was duplicated and translocated to new genomic contexts several times both prior to and following the budding yeast whole genome duplication (WGD) event. Based on synteny and their phylogeny, we separate the anCWMPs into four gene subfamilies. To resolve prior inconclusive genetic investigations of these genes, we constructed a set of combinatorial deletion mutants to determine their contributions toward anaerobic growth in S. cerevisiae. We found that two genes, TIR1 and TIR3, were together necessary and sufficient for the anCWMP contribution to anaerobic growth. Overexpressing either gene alone was insufficient for anaerobic growth, implying that they encode non-overlapping functional roles in the cell during anaerobic growth. We infer from the phylogeny of the anCWMP genes that these two important genes derive from an ancient duplication that predates the WGD event, whereas the TIR1 subfamily experienced gene family amplification after the WGD event. Taken together, the genetic and molecular evidence suggests that one key anCWMP gene duplication event, several auxiliary gene duplication events, and functional divergence underpin the evolution of anaerobic growth in budding yeasts.more » « less
-
We combine calculations of pebble accretion and accretion by large and giant impacts to quantify the effects of pebbles on the hafnium-tungsten system during Earth formation. Our models include an early pebble accretion phase lasting 4–6 Myr with a global magma ocean and core segregation, a 20–50 Myr phase of large impacts, and a late giant impact representing the Moon-forming event. We consider various mass additions during each accretion phase, vary the metal-silicate partition coefficient for tungsten over a wide range, and track (180)Hf, (182)Hf, (182)W and (184)W in proto-Earth and impactor models over time using standard chondritic values for these isotopes in the pebbles. We find that an early phase of pebble accretion is compatible with the tungsten anomaly of Earth's early mantle as well as the present-day Hf/W ratio, but under restricted conditions. In particular, the pebble mass of proto-Earth is limited to 0.7 Earth masses or less, the average metal-silicate partition coefficient for tungsten is 30–50, and because the metal-silicate equilibration efficiency for giant impacts is low, the equilibration efficiency must be high for the large impactors.more » « less