skip to main content

This content will become publicly available on December 1, 2022

Title: The homogenous alternative to biomineralization: Zn- and Mn-rich materials enable sharp organismal “tools” that reduce force requirements
Abstract We measured hardness, modulus of elasticity, and, for the first time, loss tangent, energy of fracture, abrasion resistance, and impact resistance of zinc- and manganese-enriched materials from fangs, stings and other “tools” of an ant, spider, scorpion and nereid worm. The mechanical properties of the Zn- and Mn-materials tended to cluster together between plain and biomineralized “tool” materials, with the hardness reaching, and most abrasion resistance values exceeding, those of calcified salmon teeth and crab claws. Atom probe tomography indicated that Zn was distributed homogeneously on a nanometer scale and likely bound as individual atoms to more than ¼ of the protein residues in ant mandibular teeth. This homogeneity appears to enable sharper, more precisely sculpted “tools” than materials with biomineral inclusions do, and also eliminates interfaces with the inclusions that could be susceptible to fracture. Based on contact mechanics and simplified models, we hypothesize that, relative to plain materials, the higher elastic modulus, hardness and abrasion resistance minimize temporary or permanent tool blunting, resulting in a roughly 2/3 reduction in the force, energy, and muscle mass required to initiate puncture of stiff materials, and even greater force reductions when the cumulative effects of abrasion are considered. We suggest more » that the sharpness-related force reductions lead to significant energy savings, and can also enable organisms, especially smaller ones, to puncture, cut, and grasp objects that would not be accessible with plain or biomineralized “tools”. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2104177 1408933
Publication Date:
NSF-PAR ID:
10339347
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the fracture response of metakaolin-based geopolymer reinforced with 0.1 wt%, 0.2 wt%, and 0.5 wt% carbon nanofibers. We measure the elastoplastic response using micro-indentation tests. We note an increase in indentation modulus of 5%, 13%, 21%, and an increase in indentation hardness of 9%, 18%, and 25%, respectively. We measure the fracture energy using cutting-edge microscopic fracture tests. In our tests, a sphero-conical diamond indenter pushes across the specimen's surface under a prescribed vertical force. We analyze the recorded penetration depth and horizontal force using nonlinear fracture mechanics and extract the fracture parameters. We find that carbon nanofibers enhance fracture resistance. The fracture toughness increases by respectively 38%, 40%, and 45%; meanwhile, the fracture energy increases by, respectively, 83%, 72%, and 74%. We find that carbon nanofibers lead to a densification of the microstructure. Moreover, we observe crack-bridging mechanisms in geopolymer nanocomposites. This study is important to pave the way for novel enhanced-performance and multifunctional structural materials.
  2. Synopsis Puncture mechanics can be studied in the context of predator–prey interactions and provide bioinspiration for puncture tools and puncture-resistant materials. Lionfish have a passive puncture system where venomous spines (dorsal, anal, and pelvic), the tool, may embed into a predator’s skin, the target material, during an encounter. To examine predator–prey interactions, we quantified the puncture performance of red lionfish, Pterois volitans, spines in buccal skin from two potential predators and porcine skin, a biological model for human skin. We punctured dorsal, anal, and pelvic lionfish spines into three regions of buccal skin from the black grouper (Mycteroperca bonaci) and the blacktip shark (Carcharhinus limbatus), and we examined spine macro-damage (visible without a microscope) post puncture. Lionfish spines were more effective, based on lower forces measured and less damage incurred, at puncturing buccal skin of groupers compared to sharks. Anal and dorsal spines incurred the most macro-damage during successful fish skin puncture trials, while pelvic spines did not incur any macro-damage. Lionfish spines were not damaged during porcine skin testing. Anal spines required the highest forces, while pelvic spines required intermediate forces to puncture fish skin. Dorsal spines required the lowest forces to puncture fish skins, but often incurred macro-damagemore »of bent tips. All spine regions required similar forces to puncture porcine skin. These data suggest that lionfish spines may be more effective at puncturing humans such as divers than potential fish predators. These results emphasize that puncture performance is ultimately determined by both the puncture tool and target material choice. Lionfish puncture performance varies among spine region, when taking into account both the puncture force and damage sustained by the spine.« less
  3. Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which relymore »on quadratic energies to study the interactions of inclusions in membranes.« less
  4. Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which relymore »on quadratic energies to study the interactions of inclusions in membranes.« less
  5. Graphene-based materials are being developed for a variety of wearable technologies to provide advanced functions that include sensing; temperature regulation; chemical, mechanical, or radiative protection; or energy storage. We hypothesized that graphene films may also offer an additional unanticipated function: mosquito bite protection for light, fiber-based fabrics. Here, we investigate the fundamental interactions between graphene-based films and the globally important mosquito species, Aedes aegypti , through a combination of live mosquito experiments, needle penetration force measurements, and mathematical modeling of mechanical puncture phenomena. The results show that graphene or graphene oxide nanosheet films in the dry state are highly effective at suppressing mosquito biting behavior on live human skin. Surprisingly, behavioral assays indicate that the primary mechanism is not mechanical puncture resistance, but rather interference with host chemosensing. This interference is proposed to be a molecular barrier effect that prevents Aedes from detecting skin-associated molecular attractants trapped beneath the graphene films and thus prevents the initiation of biting behavior. The molecular barrier effect can be circumvented by placing water or human sweat as molecular attractants on the top (external) film surface. In this scenario, pristine graphene films continue to protect through puncture resistance—a mechanical barrier effect—while graphene oxide films absorbmore »the water and convert to mechanically soft hydrogels that become nonprotective.« less