skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MADMAX: a DSL for explanatory decision making
MADMAX is a Haskell-embedded DSL for multi-attribute, multi-layered decision making. An important feature of this DSL is the ability to generate explanations of why a computed optimal solution is better than its alternatives. The functional approach and Haskell's type system support a high-level formulation of decision-making problems, which facilitates a number of innovations, including the gradual evolution and adaptation of problem representations, a more user-friendly form of sensitivity analysis based on problem domain data, and fine-grained control over explanations.  more » « less
Award ID(s):
2114642 1717300
PAR ID:
10339412
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM SIGPLAN Conference on Generative Programming: Concepts & Experiences
Page Range / eLocation ID:
144 to 155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Transparency in computing is an important precondition to ensure the trust of users. One concrete way of delivering transparency is to provide explanations of computing results. To this end, we introduce a method for explaining the results of various linear and hierarchical multi‐criteria decision‐making (MCDM) techniques such as the weighted sum model (WSM) and the analytic hierarchy process (AHP). The two key ideas are (A) to maintain a fine‐grained representation of the values manipulated by these techniques and (B) to derive explanations from these representations through merging, filtering, and aggregating operations. An explanation in our model presents a high‐level comparison of two alternatives in an MCDM problem, presumably an optimal and a non‐optimal one, illuminating why one alternative was preferred over the other. We show the usefulness of our techniques by generating explanations for two well‐known examples from the MCDM literature. Finally, we show their efficacy by performing computational experiments. 
    more » « less
  2. The complete reason behind a decision is a Boolean formula that characterizes why the decision was made. This recently introduced notion has a number of applications, which include generating explanations, detecting decision bias and evaluating counterfactual queries. Prime implicants of the complete reason are known as sufficient reasons for the decision and they correspond to what is known as PI explanations and abductive explanations. In this paper, we refer to the prime implicates of a complete reason as necessary reasons for the decision. We justify this terminology semantically and show that necessary reasons correspond to what is known as contrastive explanations. We also study the computation of complete reasons for multi-class decision trees and graphs with nominal and numeric features for which we derive efficient, closed-form complete reasons. We further investigate the computation of shortest necessary and sufficient reasons for a broad class of complete reasons, which include the derived closed forms and the complete reasons for Sentential Decision Diagrams (SDDs). We provide an algorithm which can enumerate their shortest necessary reasons in output polynomial time. Enumerating shortest sufficient reasons for this class of complete reasons is hard even for a single reason. For this problem, we provide an algorithm that appears to be quite efficient as we show empirically. 
    more » « less
  3. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  4. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the black-box'' nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  5. AI systems have been known to amplify biases in real-world data. Explanations may help human-AI teams address these biases for fairer decision-making. Typically, explanations focus on salient input features. If a model is biased against some protected group, explanations may include features that demonstrate this bias, but when biases are realized through proxy features, the relationship between this proxy feature and the protected one may be less clear to a human. In this work, we study the effect of the presence of protected and proxy features on participants’ perception of model fairness and their ability to improve demographic parity over an AI alone. Further, we examine how different treatments—explanations, model bias disclosure and proxy correlation disclosure—affect fairness perception and parity. We find that explanations help people detect direct but not indirect biases. Additionally, regardless of bias type, explanations tend to increase agreement with model biases. Disclosures can help mitigate this effect for indirect biases, improving both unfairness recognition and decision-making fairness. We hope that our findings can help guide further research into advancing explanations in support of fair human-AI decision-making. 
    more » « less