skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The six functors for Zariski-constructible sheaves in rigid geometry
We prove a generic smoothness result in rigid analytic geometry over a characteristic zero non-archimedean field. The proof relies on a novel notion of generic points in rigid analytic geometry which are well adapted to ‘spreading out’ arguments, in analogy with the use of generic points in scheme theory. As an application, we develop a six-functor formalism for Zariski-constructible étale sheaves on characteristic zero rigid spaces. Among other things, this implies that characteristic zero rigid spaces support a well-behaved theory of perverse sheaves.  more » « less
Award ID(s):
1801689 1952399 1840234
PAR ID:
10339580
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Compositio Mathematica
Volume:
158
Issue:
2
ISSN:
0010-437X
Page Range / eLocation ID:
437 to 482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An embedding of the complete bipartite graph $$K_{3,3}$$ in $$\mathbb{P}^{2}$$ gives rise to both a line arrangement and a bar-and-joint framework. For a generic placement of the six vertices, the graded Betti numbers of the logarithmic module of derivations of the line arrangement are constant, but an important example due to Ziegler shows that the graded Betti numbers are different when the points lie on a conic. Similarly, in rigidity theory a generic embedding of $$K_{3,3}$$ in the plane is an infinitesimally rigid bar-and-joint framework, but the framework is infinitesimally flexible when the points lie on a conic. We develop the theory of weak perspective representations of hyperplane arrangements to formalize and generalize the striking connection between hyperplane arrangements and rigidity theory that the example above suggests. In characteristic zero we show that there is a one-to-one correspondence between weak perspective representations of a hyperplane arrangement and polynomials of minimal degree in certain saturations of the Jacobian ideal of the arrangement, providing a connection to algebra. In this setting we can use duality theorems to explain how rigidity theory is reflected in the graded Betti numbers of the module of logarithmic derivations of a line arrangement. 
    more » « less
  2. We study the Rouquier dimension of wrapped Fukaya categories of Liouville manifolds and pairs, and apply this invariant to various problems in algebraic and symplectic geometry. On the algebro-geometric side, we introduce a new method based on symplectic flexibility and mirror symmetry to bound the Rouquier dimension of derived categories of coherent sheaves on certain complex algebraic varieties and stacks. These bounds are sharp in dimension at most $$3$$ . As an application, we resolve a well-known conjecture of Orlov for new classes of examples (e.g. toric $$3$$ -folds, certain log Calabi–Yau surfaces). We also discuss applications to non-commutative motives on partially wrapped Fukaya categories. On the symplectic side, we study various quantitative questions including the following. (1) Given a Weinstein manifold, what is the minimal number of intersection points between the skeleton and its image under a generic compactly supported Hamiltonian diffeomorphism? (2) What is the minimal number of critical points of a Lefschetz fibration on a Liouville manifold with Weinstein fibers? We give lower bounds for these quantities which are to the best of the authors’ knowledge the first to go beyond the basic flexible/rigid dichotomy. 
    more » « less
  3. We categorify the inclusion–exclusion principle for partially ordered topological spaces and schemes to a filtration on the derived category of sheaves. As a consequence, we obtain functorial spectral sequences that generalize the two spectral sequences of a stratified space and certain Vassiliev-type spectral sequences; we also obtain Euler characteristic analogs in the Grothendieck ring of varieties. As an application, we give an algebro-geometric proof of Vakil and Wood's homological stability conjecture for the space of smooth hypersurface sections of a smooth projective variety. In characteristic zero this conjecture was previously established by Aumonier via topological methods. 
    more » « less
  4. We prove the relative Grauert–Riemenschneider vanishing, Kawamata–Viehweg vanishing, and Kollár injectivity theorems for proper morphisms of schemes of equal characteristic zero, solving conjectures of Boutot and Kawakita. Our proof uses the Grothendieck limit theorem for sheaf cohomology and Zariski–Riemann spaces. We also show that these vanishing and injectivity theorems hold for locally Moishezon (respectively, projective) morphisms of quasi-excellent algebraic spaces and semianalytic germs of complex-analytic spaces (respectively, quasi-excellent formal schemes and non-Archimedean analytic spaces), all in equal characteristic zero. We give many applications of our vanishing results. For example, we extend Boutot’s theorem to all Noetherian Q-algebras by showing that pseudo-rationality descends under pure maps of Q-algebras. This solves a conjecture of Boutot and answers a question of Schoutens. The proofs of this Boutot-type result and of our vanishing and injectivity theorems all use a new characterization of rational singularities using Zariski–Riemann spaces. 
    more » « less
  5. Brill-Noether Theorems play a central role in the birational geometry of moduli spaces of sheaves on surfaces. This paper surveys recent work on the Brill-Noether problem for rational surfaces. In order to highlight some of the difficulties for more general surfaces, we show that moduli spaces of rank 2 sheaves on very general hypersurfaces of degree d in P3 can have arbitrarily many irreducible components as d tends to infinity. 
    more » « less