skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Aquatic reservoir of Vibrio cholerae in an African Great Lake assessed by large scale plankton sampling and ultrasensitive molecular methods
Abstract The significance of large tropical lakes as environmental reservoirs of Vibrio cholerae in cholera endemic countries has yet to be established. By combining large scale plankton sampling, microbial culture and ultrasensitive molecular methods, namely Droplet Digital PCR (ddPCR) and targeted genomics, the presence of Vibrio cholerae was investigated in a 96,600 L volume of surface water collected on a 322 nautical mile (596 km) transect in Lake Tanganyika. V. cholerae was detected and identified in a large area of the lake. In contrast, toxigenic strains of V. cholerae O1 or O139 were not detected in plankton samples possibly in relation to environmental conditions of the lake ecosystem, namely very low salinity compared to marine brackish and coastal environments. This represents to our knowledge, the largest environmental study to determine the role of tropical lakes as a reservoir of V. cholerae .  more » « less
Award ID(s):
1657887
NSF-PAR ID:
10339747
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ISME Communications
Volume:
1
Issue:
1
ISSN:
2730-6151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stabb, Eric V. (Ed.)
    ABSTRACT Dimethylsulfoniopropionate (DMSP), a key component of the global geochemical sulfur cycle, is a secondary metabolite produced in large quantities by marine phytoplankton and utilized as an osmoprotectant, thermoprotectant, and antioxidant. Marine bacteria can use two pathways to degrade and catabolize DMSP, a demethylation pathway and a cleavage pathway that produces the climate-active gas dimethylsulfide (DMS). Whether marine bacteria can also accumulate DMSP as an osmoprotectant to maintain the turgor pressure of the cell in response to changes in external osmolarity has received little attention. The marine halophile Vibrio parahaemolyticus contains at least six osmolyte transporters, namely four betaine carnitine choline transport (BCCT) carriers (BccT1 to BccT4) and two ATP-binding cassette (ABC) family ProU transporters. In this study, we showed that DMSP is used as an osmoprotectant by V. parahaemolyticus and by several other Vibrio species, including Vibrio cholerae and Vibrio vulnificus . Using a V. parahaemolyticus proU double mutant, we demonstrated that these ABC transporters are not required for DMSP uptake. However, a bccT null mutant lacking all four BCCTs had a growth defect compared to the wild type (WT) in high-salinity medium supplemented with DMSP. Using mutants possessing only one functional BCCT in growth pattern assays, we identified two BCCT family transporters, BccT1 and BccT2, that are carriers of DMSP. The only V. parahaemolyticus BccT homolog that V. cholerae and V. vulnificus possess is BccT3, and functional complementation in Escherichia coli MKH13 showed that V. cholerae VcBccT3 could transport DMSP. In V. vulnificus strains, we identified and characterized an additional BCCT family transporter, which we named BccT5, that was also a carrier for DMSP. IMPORTANCE DMSP is present in the marine environment, produced in large quantities by marine phytoplankton as an osmoprotectant, and is an important component of the global geochemical sulfur cycle. This algal osmolyte has not been previously investigated for its role in marine heterotrophic bacterial osmotic stress response. Vibrionaceae species are marine species, many of which are halophiles exemplified by V. parahaemolyticus , a species that possesses at least six transporters for the uptake of osmolytes. Here, we demonstrated that V. parahaemolyticus and other Vibrio species can accumulate DMSP as an osmoprotectant and show that several BCCT family transporters uptake DMSP. These studies suggest that DMSP is a significant bacterial osmoprotectant that may be important for understanding the fate of DMSP in the environment. DMSP is produced and present in coral mucus, and Vibrio species form part of the microbial communities associated with corals. The function of DMSP in these interactions is unclear, but it could be an important driver for these associations, allowing Vibrio proliferation. This work suggests that DMSP likely has a more important role in heterotrophic bacteria ecology than previously appreciated. 
    more » « less
  2. O’Toole, George (Ed.)
    ABSTRACT Transitions between individual and communal lifestyles allow bacteria to adapt to changing environments. Bacteria must integrate information encoded in multiple sensory cues to appropriately undertake these transitions. Here, we investigate how two prevalent sensory inputs converge on biofilm morphogenesis: quorum sensing, which endows bacteria with the ability to communicate and coordinate group behaviors, and second messenger c-di-GMP signaling, which allows bacteria to detect and respond to environmental stimuli. We use Vibrio cholerae as our model system, the autoinducer AI-2 to modulate quorum sensing, and the polyamine norspermidine to modulate NspS-MbaA-mediated c-di-GMP production. Individually, AI-2 and norspermidine drive opposing biofilm phenotypes, with AI-2 repressing and norspermidine inducing biofilm formation. Surprisingly, however, when AI-2 and norspermidine are simultaneously detected, they act synergistically to increase biofilm biomass and biofilm cell density. We show that this effect is caused by quorum-sensing-mediated activation of nspS - mbaA expression, which increases the levels of NspS and MbaA, and in turn, c-di-GMP biosynthesis, in response to norspermidine. Increased MbaA-synthesized c-di-GMP activates the VpsR transcription factor, driving elevated expression of genes encoding key biofilm matrix components. Thus, in the context of biofilm morphogenesis in V. cholerae, quorum-sensing regulation of c-di-GMP-metabolizing receptor levels connects changes in cell population density to detection of environmental stimuli. IMPORTANCE The development of multicellular communities, known as biofilms, facilitates beneficial functions of gut microbiome bacteria and makes bacterial pathogens recalcitrant to treatment. Understanding how bacteria regulate the biofilm life cycle is fundamental to biofilm control in industrial processes and in medicine. Here, we demonstrate how two major sensory inputs—quorum-sensing communication and second messenger c-di-GMP signaling—jointly regulate biofilm morphogenesis in the global pathogen Vibrio cholerae. We characterize the mechanism underlying a surprising synergy between quorum-sensing and c-di-GMP signaling in controlling biofilm development. Thus, the work connects changes in cell population density to detection of environmental stimuli in a pathogen of clinical significance. 
    more » « less
  3. null (Ed.)
    Climate variables influence the occurrence, growth, and distribution of Vibrio cholerae in the aquatic environment. Together with socio-economic factors, these variables affect the incidence and intensity of cholera outbreaks. The current pandemic of cholera began in the 1960s, and millions of cholera cases are reported each year globally. Hence, cholera remains a significant health challenge, notably where human vulnerability intersects with changes in hydrological and environmental processes. Cholera outbreaks may be epidemic or endemic, the mode of which is governed by trigger and transmission components that control the outbreak and spread of the disease, respectively. Traditional cholera risk assessment models, namely compartmental susceptible-exposed-infected-recovered (SEIR) type models, have been used to determine the predictive spread of cholera through the fecal–oral route in human populations. However, these models often fail to capture modes of infection via indirect routes, such as pathogen movement in the environment and heterogeneities relevant to disease transmission. Conversely, other models that rely solely on variability of selected environmental factors (i.e., examine only triggers) have accomplished real-time outbreak prediction but fail to capture the transmission of cholera within impacted populations. Since the mode of cholera outbreaks can transition from epidemic to endemic, a comprehensive transmission model is needed to achieve timely and reliable prediction with respect to quantitative environmental risk. Here, we discuss progression of the trigger module associated with both epidemic and endemic cholera, in the context of the autochthonous aquatic nature of the causative agent of cholera, V. cholerae, as well as disease prediction. 
    more » « less
  4. Storz, Gisela (Ed.)
    ABSTRACT Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes and other organisms to new niches. Comparative genomics can be used to infer rewiring of regulatory architecture based on large effect mutations like loss or acquisition of transcription factors but may be insufficient to identify small changes in noncoding, intergenic DNA sequence of regulatory elements that drive phenotypic divergence. In human-derived Vibrio cholerae , the response to distinct chemical cues triggers production of multiple transcription factors that can regulate the type VI secretion system (T6), a broadly distributed weapon for interbacterial competition. However, to date, the signaling network remains poorly understood because no regulatory element has been identified for the major T6 locus. Here we identify a conserved cis -acting single nucleotide polymorphism (SNP) controlling T6 transcription and activity. Sequence alignment of the T6 regulatory region from diverse V. cholerae strains revealed conservation of the SNP that we rewired to interconvert V. cholerae T6 activity between chitin-inducible and constitutive states. This study supports a model of pathogen evolution through a noncoding cis -regulatory mutation and preexisting, active transcription factors that confers a different fitness advantage to tightly regulated strains inside a human host and unfettered strains adapted to environmental niches. IMPORTANCE Organisms sense external cues with regulatory circuits that trigger the production of transcription factors, which bind specific DNA sequences at promoters (“ cis ” regulatory elements) to activate target genes. Mutations of transcription factors or their regulatory elements create phenotypic diversity, allowing exploitation of new niches. Waterborne pathogen Vibrio cholerae encodes the type VI secretion system “nanoweapon” to kill competitor cells when activated. Despite identification of several transcription factors, no regulatory element has been identified in the promoter of the major type VI locus, to date. Combining phenotypic, genetic, and genomic analysis of diverse V. cholerae strains, we discovered a single nucleotide polymorphism in the type VI promoter that switches its killing activity between a constitutive state beneficial outside hosts and an inducible state for constraint in a host. Our results support a role for noncoding DNA in adaptation of this pathogen. 
    more » « less
  5. Abstract

    Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.

     
    more » « less