skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cellular metabolism and IL-6 concentrations during stimulated inflammation in small and large dog breeds’ primary fibroblasts cells, as they age
The immune system undergoes marked changes during aging characterized by a state of chronic, low-grade inflammation, so called inflammaging. Domestic dogs are the most morphological and physiological diverse group of mammals, with the widest range in body masses for a single species. Additionally, smaller dogs tend to live significantly longer than larger dogs across all breeds. Body mass is intricately linked to mass-specific metabolism and aging rates, thus, dogs are exemplary for studies in inflammaging. Dermal fibroblasts cells play an important role in skin inflammation, and as such, are a good cell type to determine inflammatory patterns in dogs. Here, we examine aerobic and glycolytic cellular metabolism, and IL-6 concentrations in primary fibroblast cells isolated from small and large, young and old dogs when treated with lipopolysaccharide (LPS) from Escherichia coli to stimulate an inflammatory phenotype. We found no differences in cellular metabolism of any group when treated with LPS. Unlike mice and humans, there was a less drastic amplification of IL-6 concentration after LPS treatment in the geriatric population of dogs compared with puppies. We also found evidence that large breed puppies have significantly less background or control IL-6 concentrations compared with small breed puppies. This implies that the patterns of inflammaging in dogs may be distinct and different from other mammals commonly studied.  more » « less
Award ID(s):
1656551
PAR ID:
10339888
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
233
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Canids are a morphological and physiological diverse group of animals, with the most diversity found within one species, the domestic dog. Underlying observed morphological differences, there must also be differences at other levels of organization that could lead to elucidating aging rates and life span disparities between wild and domestic canids. Furthermore, small-breed dogs live significantly longer lives than large-breed dogs, while having higher mass-specific metabolic rates and faster growth rates. At the cellular level, a clear mechanism underlying whole animal traits has not been fully elucidated, although oxidative stress has been implicated as a potential culprit of the disparate life spans of domestic dogs. We used plasma and red blood cells from known aged domestic dogs and wild canids, and measured several oxidative stress variables: total antioxidant capacity (TAC), lipid damage, and enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase (GPx). We used phylogenetically informed general linear mixed models and nonphylogenetically corrected linear regression analysis. We found that lipid damage increases with age in domestic dogs, whereas TAC increases with age and TAC and GPx activity increases as a function of age/maximum life span in wild canids, which may partly explain longer potential life spans in wolves. As body mass increases, TAC and GPx activity increase in wild canids, but not domestic dogs, highlighting that artificial selection may have decreased antioxidant capacity in domestic dogs. We found that small-breed dogs have significantly higher circulating lipid damage compared with large-breed dogs, concomitant to their high mass-specific metabolism and higher growth rates, but in opposition to their long life spans. 
    more » « less
  2. ABSTRACT Introduction:We hypothesized extracellular vesicles (EVs) from preconditioned human-induced pluripotent stem cell–derived mesenchymal stem cells (iMSCs) attenuate LPS-induced acute lung injury (ALI) and endotoxemia.Methods:iMSCs were incubated with cell stimulation cocktail (CSC) and EVs were isolated. iMSC-EVs were characterized by size and EV markers. Biodistribution of intratracheal (IT), intravenous, and intraperitoneal injection of iMSC-EVs in mice was examined using IVIS. Uptake of iMSC-EVs in lung tissue, alveolar macrophages, and RAW264.7 cells was also assessed. C57BL/6 mice were treated with IT/IP iMSC-EVs or vehicle ± IT/IP LPS to induce ALI/acute respiratory distress syndrome and endotoxemia. Lung tissues, plasma, and bronchoalveolar lavage fluid (BALF) were harvested at 24 h. Lung histology, BALF neutrophil/macrophage, cytokine levels, and total protein concentration were measured to assess ALI and inflammation. Survival studies were performed using IP LPS in mice for 3 days.Results:iMSC-EV route of administration resulted in differential tissue distribution. iMSC-EVs were taken up by alveolar macrophages in mouse lung and cultured RAW264.7 cells. IT LPS-treated mice demonstrated marked histologic ALI, increased BALF neutrophils/macrophages and protein, and increased BALF and plasma TNF-α/IL-6 levels. These parameters were attenuated by 2 h before or 2 h after treatment with IT iMSC-EVs in ALI mice. Interestingly, the IT LPS-induced increase in IL-10 was augmented by iMSC-EVs. Mice treated with IP LPS showed increases in TNF-α and IL-6 that were downregulated by iMSC-EVs and LPS-induced mortality was ameliorated by iMSC-EVs. Administration of IT iMSC-EVs 2 h after LPS downregulated the increase in proinflammatory cytokines (TNF-α/IL-6) by LPS and further increased IL-10 levels.Conclusions:iMSC-EVs attenuate the inflammatory effects of LPS on cytokine levels in ALI and IP LPS in mice. LPS-induced mortality was improved with administration of iMSC-EVs. 
    more » « less
  3. null (Ed.)
    Intrinsic skin aging and photoaging, from exposure to ultraviolet (UV) radiation, are associated with altered regulation of genes associated with the extracellular matrix (ECM) and inflammation, as well as cellular damage from oxidative stress. The regulatory properties of 1-alpha, 25dihydroxyvitamin D3 (vitamin D) include endocrine, ECM regulation, cell differentiation, photoprotection, and anti-inflammation. The goal of this research was to identify the beneficial effects of vitamin D in preventing intrinsic skin aging and photoaging, through its direct effects as well as its effects on the ECM, associated heat shock proteins (HSP-47, and -70), cellular oxidative stress effects, and inflammatory cytokines [interleukin (IL)-1 and IL-8] in non-irradiated, UVA-radiated, UVB-radiated dermal fibroblasts. With regard to the ECM, vitamin D stimulated type I collagen and inhibited cellular elastase activity in non-irradiated fibroblasts; and stimulated type I collagen and HSP-47, and inhibited elastin expression and elastase activity in UVA-radiated dermal fibroblasts. With regard to cellular protection, vitamin D inhibited oxidative damage to DNA, RNA, and lipids in non-irradiated, UVA-radiated and UVB-radiated fibroblasts, and, in addition, increased cell viability of UVB-radiated cells. With regard to anti-inflammation, vitamin D inhibited expression of Il-1 and IL-8 in UVA-radiated fibroblasts, and stimulated HSP-70 in UVA-radiated and UVB-radiated fibroblasts. Overall, vitamin D is predominantly beneficial in preventing UVA-radiation induced photoaging through the differential regulation of the ECM, HSPs, and inflammatory cytokines, and protective effects on the cellular biomolecules. It is also beneficial in preventing UVB-radiation associated photoaging through the stimulation of cell viability and HSP-70, and the inhibition of cellular oxidative damage, and in preventing intrinsic aging through the stimulation of type I collagen and inhibition of cellular oxidative damage. 
    more » « less
  4. null (Ed.)
    Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on other periodontal cell types, such as gingival fibroblasts, remain to be clarified. The present aim was to examine the independent and combined effects of these cyclic dinucleotides and LPS on interleukin (IL) and matrix metalloproteinase (MMP) response of HGFs. The cells were incubated with c-di-GMP and c-di-AMP, either in the presence or absence of Porphyromonas gingivalis LPS, for 2 h and 24 h. The levels of IL-8, -10, and -34, and MMP-1, -2, and -3 secreted were measured by the Luminex technique. LPS alone or together with cyclic dinucleotides elevated IL-8 levels. IL-10 levels were significantly increased in the presence of c-di-GMP and LPS after 2 h but disappeared after 24 h of incubation. Concurrent treatment of c-di-AMP and LPS elevated MMP-1 levels, whereas c-di-GMP with LPS suppressed MMP-2 levels but increased MMP-3 levels. To conclude, we produce evidence that cyclic dinucleotides interact with LPS-mediated early response of gingival fibroblasts, while late cellular response is mainly regulated by LPS. 
    more » « less
  5. Miller, Samuel I. (Ed.)
    ABSTRACT Animals that are competent reservoirs of zoonotic pathogens commonly suffer little morbidity from the infections. To investigate mechanisms of this tolerance of infection, we used single-dose lipopolysaccharide (LPS) as an experimental model of inflammation and compared the responses of two rodents: Peromyscus leucopus , the white-footed deermouse and reservoir for the agents of Lyme disease and other zoonoses, and the house mouse Mus musculus . Four hours after injection with LPS or saline, blood, spleen, and liver samples were collected and subjected to transcriptome sequencing (RNA-seq), metabolomics, and specific reverse transcriptase quantitative PCR (RT-qPCR). Differential expression analysis was at the gene, pathway, and network levels. LPS-treated deermice showed signs of sickness similar to those of exposed mice and had similar increases in corticosterone levels and expression of interleukin 6 (IL-6), tumor necrosis factor, IL-1β, and C-reactive protein. By network analysis, the M. musculus response to LPS was characterized as cytokine associated, while the P. leucopus response was dominated by neutrophil activity terms. In addition, dichotomies in the expression levels of arginase 1 and nitric oxide synthase 2 and of IL-10 and IL-12 were consistent with type M1 macrophage responses in mice and type M2 responses in deermice. Analysis of metabolites in plasma and RNA in organs revealed species differences in tryptophan metabolism. Two genes in particular signified the different phenotypes of deermice and mice: the Slpi and Ibsp genes. Key RNA-seq findings for P. leucopus were replicated in older animals, in a systemic bacterial infection, and with cultivated fibroblasts. The findings indicate that P. leucopus possesses several adaptive traits to moderate inflammation in its balancing of infection resistance and tolerance. IMPORTANCE Animals that are natural carriers of pathogens that cause human diseases commonly manifest little or no sickness as a consequence of infection. Examples include the deermouse, Peromyscus leucopus , which is a reservoir for Lyme disease and several other disease agents in North America, and some types of bats, which are carriers of viruses with pathogenicity for humans. Mechanisms of this phenomenon of infection tolerance and entailed trade-off costs are poorly understood. Using a single injection of lipopolysaccharide (LPS) endotoxin as a proxy for infection, we found that deermice differed from the mouse ( Mus musculus ) in responses to LPS in several diverse pathways, including innate immunity, oxidative stress, and metabolism. Features distinguishing the deermice cumulatively would moderate downstream ill effects of LPS. Insights gained from the P. leucopus model in the laboratory have implications for studying infection tolerance in other important reservoir species, including bats and other types of wildlife. 
    more » « less