skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dual electrochemical and chemical control in atom transfer radical polymerization with copper electrodes
In Atom Transfer Radical Polymerization (ATRP), Cu 0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the Cu I activator through a comproportionation reaction, respectively. Cu 0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP ( e ATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in e ATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage.  more » « less
Award ID(s):
2000391
PAR ID:
10340014
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
13
Issue:
20
ISSN:
2041-6520
Page Range / eLocation ID:
6008 to 6018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuIcomplex on Cu0electrodes. Additionally, Cu0served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuIactivator through a comproportionation reaction. We harnessed the distinct properties of Cu0dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square‐wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low‐activity Cu/2,2‐bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain‐end fidelity of the produced polymers, yielding functional and high molecular‐weight block copolymers. SEM analysis indicated the robustness of the Cu0electrodes, sustaining at least 15 consecutive polymerizations. 
    more » « less
  2. The mechanism of atom transfer radical polymerization (ATRP) mediated by sodium dithionite (Na 2 S 2 O 4 ), with Cu II Br 2 /Me 6 TREN as catalyst (Me 6 TREN: tris[2-(dimethylamino)ethyl]amine) in ethanol/water mixtures, was investigated experimentally and by kinetic simulations. A kinetic model was proposed and the rate coefficients of the relevant reactions were measured. The kinetic model was validated by the agreement between experimental and simulated results. The results indicated that the polymerization followed the SARA ATRP mechanism, with a SO 2 ˙ − radical anion derived from Na 2 S 2 O 4 , acting as both supplemental activator (SA) of alkyl halides and reducing agent (RA) for Cu II /L to regenerate the main activator Cu I /L. This is similar to the reversible-deactivation radical polymerization (RDRP) procedure conducted in the presence of Cu 0 . The electron transfer from SO 2 ˙ − , to either Cu II Br 2 /Me 6 TREN or R–Br initiator, appears to follow an outer sphere electron transfer (OSET) process. The developed kinetic model was used to study the influence of targeted degree of polymerization, concentration of Cu II Br 2 /Me 6 TREN and solubility of Na 2 S 2 O 4 on the level of polymerization control. The presence of small amounts of water in the polymerization mixtures slightly increased the reactivity of the Cu I /L complex, but markedly increased the reactivity of sulfites. 
    more » « less
  3. This chapter highlights the current advancements in reversible-deactivation radical polymerization (RDRP) with a specific focus on atom transfer radical polymerization (ATRP). The chapter begins with highlighting the termination pathways for acrylates radicals that were recently explored via RDRP techniques. This led to a better understanding of the catalytic radical termination (CRT) in ATRP for acrylate radicals. The designed new ligands for ATRP also enabled the suppression of CRT and increased chain end functionality. In addition, further mechanistic understandings of SARA-ATRP with Cu0 activation and comproportionation were studied using model reactions with different ligands and alkyl halide initiators. Another focus of RDRP in recent years has been on systems that are regulated by external stimuli such as light, electricity, mechanical forces and chemical redox reactions. Recent advancements made in RDRP in the field of complex polymeric architectures, organic-inorganic hybrid materials and bioconjugates have also been summarized. 
    more » « less
  4. Abstract Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well‐defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high‐energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems. This drawback can be circumvented by an introduction of the catalytic amount of photocatalysts, which absorb visible and/or NIR light and, therefore, controlled, regenerative ATRP can be performed with the dual‐catalytic cycle. Herein, a critical summary of recent developments in the field of dual‐catalysis concerning Cu‐catalyzed ATRP is provided. Contributions of involved species are examined mechanistically, followed by challenges and future directions towards the next generation of advanced functional macromolecular materials. 
    more » « less
  5. Abstract Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (PICAR ATRP) using sodium pyruvate and blue light (λmax = 456 nm) is reported. Water‐soluble oligo(ethylene oxide) methyl ether methacrylate (OEOMA500) was polymerized under biologically relevant conditions. Polymerizations were conducted with 1000 ppm (with respect to the monomer) concentrations of CuBr2, tris(2‐pyridylmethyl)amine, and 1000 ppm or less FeCl3as a cocatalyst in water. Well‐defined polymers with up to 90% monomer conversion, high molecular weights (Mn > 190,000), and low dispersity (1.14 < Ð < 1.19) were synthesized in less than 60 min. The polymerization rate and dispersity were tuned by varying the concentration of sodium pyruvate (SP), iron, and supporting halide, as well as light intensity. The Cu/Fe dual catalysis provided oxygen tolerance enabling rapid, well‐controlled, aqueous PICAR ATRP of OEOMA500without deoxygenation. 
    more » « less