skip to main content


Title: Disentangling Pauli Blocking of Atomic Decay from Cooperative Radiation and Atomic Motion in a 2D Fermi Gas
Award ID(s):
2016244 1734006
NSF-PAR ID:
10363722
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
128
Issue:
9
ISSN:
0031-9007; PRLTAO
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The DDEC6 method is one of the most accurate and broadly applicable atomic population analysis methods. It works for a broad range of periodic and non-periodic materials with no magnetism, collinear magnetism, and non-collinear magnetism irrespective of the basis set type. First, we show DDEC6 charge partitioning to assign net atomic charges corresponds to solving a series of 14 Lagrangians in order. Then, we provide flow diagrams for overall DDEC6 analysis, spin partitioning, and bond order calculations. We wrote an OpenMP parallelized Fortran code to provide efficient computations. We show that by storing large arrays as shared variables in cache line friendly order, memory requirements are independent of the number of parallel computing cores and false sharing is minimized. We show that both total memory required and the computational time scale linearly with increasing numbers of atoms in the unit cell. Using the presently chosen uniform grids, computational times of ∼9 to 94 seconds per atom were required to perform DDEC6 analysis on a single computing core in an Intel Xeon E5 multi-processor unit. Parallelization efficiencies were usually >50% for computations performed on 2 to 16 cores of a cache coherent node. As examples we study a B-DNA decamer, nickel metal, supercells of hexagonal ice crystals, six X@C 60 endohedral fullerene complexes, a water dimer, a Mn 12 -acetate single molecule magnet exhibiting collinear magnetism, a Fe 4 O 12 N 4 C 40 H 52 single molecule magnet exhibiting non-collinear magnetism, and several spin states of an ozone molecule. Efficient parallel computation was achieved for systems containing as few as one and as many as >8000 atoms in a unit cell. We varied many calculation factors ( e.g. , grid spacing, code design, thread arrangement, etc. ) and report their effects on calculation speed and precision. We make recommendations for excellent performance. 
    more » « less
  2. null (Ed.)
  3. For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth on common dielectric materials in contrast to thermal oxide/ nitride substrates. The selective deposition produced few layer MoS2 films on patterned growth regions as measured by Raman spectroscopy and time-of-flight secondary ion mass spectrometry. We additionally demonstrate that the selectivity can be enhanced by implementing atomic layer etching (ALE) steps at regular intervals during MoS2 growth. This area-selective ALD process provides an approach for integrating 2D films into next-generation devices by leveraging the inherent differences in surface chemistries and providing insight into the effectiveness of a supercycle ALD and ALE process. 
    more » « less