skip to main content


Title: Microbial Hydrocarbon Degradation in Guaymas Basin—Exploring the Roles and Potential Interactions of Fungi and Sulfate-Reducing Bacteria
Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin.  more » « less
Award ID(s):
1829903 1829680 2048489
NSF-PAR ID:
10340272
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin. 
    more » « less
  2. Brazelton, William J. (Ed.)
    The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi. 
    more » « less
  3. The surficial hydrothermal sediments of Guaymas Basin harbor complex microbial communities where oxidative and reductive nitrogen, sulfur, and carbon-cycling populations and processes overlap and coexist. Here, we resolve microbial community profiles in hydrothermal sediment cores of Guaymas Basin on a scale of 2 millimeters, using Denaturing Gradient Gel Electrophoresis (DGGE) to visualize the rapid downcore changes among dominant bacteria and archaea. DGGE analysis of bacterial 16S rRNA gene amplicons identified free-living and syntrophic deltaproteobacterial sulfate-reducing bacteria, fermentative Cytophagales, members of the Chloroflexi (Thermoflexia), Aminicenantes, and uncultured sediment clades. The DGGE pattern indicates a gradually changing downcore community structure where small changes on a 2-millimeter scale accumulate to significantly changing populations within the top 4 cm sediment layer. Functional gene DGGE analyses identified anaerobic methane-oxidizing archaea (ANME) based on methyl-coenzyme M reductase genes, and members of the Betaproteobacteria and Thaumarchaeota based on bacterial and archaeal ammonia monooxygenase genes, respectively. The co-existence and overlapping habitat range of aerobic, nitrifying, sulfate-reducing and fermentative bacteria and archaea, including thermophiles, in the surficial sediments is consistent with dynamic redox and thermal gradients that sustain highly complex microbial communities in the hydrothermal sediments of Guaymas Basin. 
    more » « less
  4. Microbes in Guaymas Basin (Gulf of California) hydrothermal sediments thrive on hydrocarbons and sulfur and experience steep, fluctuating temperature and chemical gradients. The functional capacities of communities inhabiting this dynamic habitat are largely unknown. Here, we reconstructed 551 genomes from hydrothermally influenced, and nearby cold sediments belonging to 56 phyla (40 uncultured). These genomes comprise 22 unique lineages, including five new candidate phyla. In contrast to findings from cold hydrocarbon seeps, hydrothermal-associated communities are more diverse and archaea dominate over bacteria. Genome-based metabolic inferences provide first insights into the ecological niches of these uncultured microbes, including methane cycling in new Crenarchaeota and alkane utilization in ANME-1. These communities are shaped by a high biodiversity, partitioning among nitrogen and sulfur pathways and redundancy in core carbon-processing pathways. The dynamic sediments select for distinctive microbial communities that stand out by expansive biodiversity, and open up new physiological perspectives into hydrothermal ecosystem function. 
    more » « less
  5. null (Ed.)
    International Ocean Discovery Program Expedition 385 drilled organic-rich sediments and intruded sills in the off-axis region and axial graben of the northern spreading segment of Guaymas Basin, a young marginal seafloor spreading system in the Gulf of California. Guaymas Basin is characterized by high heat flow and magmatism in the form of sill intrusions into sediments, which extends tens of kilometers off axis, in contrast with the localized volcanism found at most mid-ocean ridge spreading centers. Sill intrusions provide transient heat sources that mobilize buried sedimentary carbon, in part as methane and other hydrocarbons, and drive hydrothermal circulation. The resulting thermal and geochemical gradients shape abundance, composition, and activity of the deep subsurface biosphere of the basin. Drill sites extend over a broad region of Guaymas Basin. Adjacent Sites U1545 and U1546, located ~52 km northwest of the northern Guaymas Basin axial graben, recovered sediment successions to ~540 meters below seafloor (mbsf) (equivalent to the core depth below seafloor, Method A [CSF-A] scale), including a thin sill (a few meters thick) drilled near the bottom of Site U1545 and a massive sill (~355–430 mbsf) at Site U1546 that chemically and physically affects the surrounding sediments. Sites U1547 and U1548, located ~27 km northwest of the axial graben, were drilled to investigate an active sill-driven hydrothermal system evident at the seafloor as an 800 m wide, circular bathymetric high called Ringvent because of its outline of a ring of active vent sites. Ringvent is underlain by a thick sill at shallow depth (Site U1547). Geothermal gradients steepen toward the Ringvent periphery (Holes U1548A–U1548C), and the zones of authigenic carbonate precipitation and of highest microbial cell abundance correspondingly shallow toward the periphery. The underlying sill was drilled several times and yielded diverse igneous rock textures, sediment/sill interfaces, and alteration minerals in veins and vesicles. The Ringvent sill became the target of an integrated, interdisciplinary sampling and research effort that included geological, geochemical, and microbiological components. The thermal, lithologic, geochemical, and microbiological contrasts between the northwestern sites (U1545 and U1546) and the Ringvent sites (U1547 and U1548) form the core scientific observations informing the direct influence of sill-sediment interaction. These observations are supplemented by results from sites that exhibit persistent influence of thermally equilibrated sill intrusions, including supporting long-lived methane cold seeps, as observed at off-axis Sites U1549 and U1552, and the persistent geochemical record of hydrocarbon formation near the sill/sediment contact, as observed at the northern axial trough Site U1550, which confirms observations from Deep Sea Drilling Project (DSDP) Leg 64. Drilling at Site U1551 ~29 km southeast of the axial graben was not successful due to unstable shallow sands, but it confirmed the dominant influence of gravity-flow sedimentation processes southeast of the axial graben. The scientific outcomes of Expedition 385 will (1) revise long-held assumptions about the role of sill emplacement in subsurface carbon mobilization versus carbon retention, (2) comprehensively examine the subsurface biosphere of Guaymas Basin and its responses and adaptations to hydrothermal conditions, (3) redefine hydrothermal controls on authigenic mineral formation in sediments, and (4) yield new insights into the long term influence of sill-sediment interaction on sediments deposited at the earliest stages of seafloor spreading, that is, when spreading centers are proximal to a continental margin. The generally high quality and high degree of completeness of the shipboard data sets present opportunities for inter- and multidisciplinary collaborations during shore-based studies. In comparison to DSDP Leg 64 to Guaymas Basin in 1979, continuous availability of sophisticated drilling strategies (e.g., the advanced piston corer [APC] and half-length APC systems) and numerous analytical innovations greatly improved sample recovery and scientific yield, particularly in the areas of organic geochemistry and microbiology. For example, microbial metagenomics did not exist 40 y ago. However, these technical refinements do not change the fact that Expedition 385 in many respects builds on the foundations of understanding laid by Leg 64 drilling in Guaymas Basin. 
    more » « less