skip to main content


Title: Phase transitions affected by natural and forceful molecular interconversion

If a binary liquid mixture, composed of two alternative species with equal amounts, is quenched from a high temperature to a low temperature, below the critical point of demixing, then the mixture will phase separate through a process known as spinodal decomposition. However, if the two alternative species are allowed to interconvert, either naturally (e.g., the equilibrium interconversion of enantiomers) or forcefully (e.g., via an external source of energy or matter), then the process of phase separation may drastically change. In this case, depending on the nature of interconversion, two phenomena could be observed: either phase amplification, the growth of one phase at the expense of another stable phase, or microphase separation, the formation of nongrowing (steady-state) microphase domains. In this work, we phenomenologically generalize the Cahn–Hilliard theory of spinodal decomposition to include the molecular interconversion of species and describe the physical properties of systems undergoing either phase amplification or microphase separation. We apply the developed phenomenology to accurately describe the simulation results of three atomistic models that demonstrate phase amplification and/or microphase separation. We also discuss the application of our approach to phase transitions in polyamorphic liquids. Finally, we describe the effects of fluctuations of the order parameter in the critical region on phase amplification and microphase separation.

 
more » « less
Award ID(s):
1856479
NSF-PAR ID:
10363337
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
8
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 084502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The separation of substances into different phases is ubiquitous in nature and important scientifically and technologically. This phenomenon may become drastically different if the species involved, whether molecules or supramolecular assemblies, interconvert. In the presence of an external force large enough to overcome energetic differences between the interconvertible species (forced interconversion), the two alternative species will be present in equal amounts, and the striking phenomenon of steady-state, restricted phase separation into mesoscales is observed. Such microphase separation is one of the simplest examples of dissipative structures in condensed matter. In this work, we investigate the formation of such mesoscale steady-state structures through Monte Carlo and molecular dynamics simulations of three physically distinct microscopic models of binary mixtures that exhibit both equilibrium (natural) interconversion and a nonequilibrium source of forced interconversion. We show that this source can be introduced through an internal imbalance of intermolecular forces or an external flux of energy that promotes molecular interconversion, possible manifestations of which could include the internal nonequilibrium environment of living cells or a flux of photons. The main trends and observations from the simulations are well captured by a nonequilibrium thermodynamic theory of phase transitions affected by interconversion. We show how a nonequilibrium bicontinuous microemulsion or a spatially modulated state may be generated depending on the interplay between diffusion, natural interconversion, and forced interconversion. 
    more » « less
  2. Dissipative particle dynamics (DPD) simulations are performed on coarse-grained replicas of linear, monodisperse entangled polyethylene melts [Formula: see text] and [Formula: see text] undergoing both steady-state and transient planar elongational flow (PEF). The fidelity of the DPD simulations is verified by direct comparison of flow topological and rheological properties of a 334-particle chain liquid against the united-atom [Formula: see text] liquid, simulated using nonequilibrium molecular dynamics (NEMD). These DPD simulations demonstrate that a flow-induced coil-stretch transition (CST) and its associated hysteresis caused by configurational microphase separation, as observed in previous NEMD simulations of PEF, can be replicated using a more computationally efficient coarse-grained system. Results indicate that the breadth of the CST hysteresis loop is enlarged for the longer molecule liquid relative to the shorter one. Furthermore, relaxation simulations reveal that reducing the applied flow Deborah number ([Formula: see text]) from a high value corresponding to a homogeneous phase of highly stretched molecules to a [Formula: see text] within the biphasic region results in a two-stage relaxation process. There is a fast initial stratification of the kinetically trapped highly stretched chains into regions of highly extended and less extended chains, which displays similar behavior to a system undergoing a spinodal decomposition caused by spatial configurational free energy fluctuations. After a short induction period of apparently random duration, the less extended chain regions experience a stochastic nucleation event that induces configurational relaxation to domains composed of coiled molecules over a much longer time scale, leaving the more highly extended chains in surrounding sheetlike domains. The time scales of these two relaxation processes are of the same order of magnitude as the Rouse and disengagement times of the equilibrium liquids.

     
    more » « less
  3. Abstract

    Mesoporous inorganic particles and hollow spheres are of increasing interest for a broad range of applications, but synthesis approaches are typically material specific, complex, or lack control over desired structures. Here it is reported how combining mesoscale block copolymer (BCP) directed inorganic materials self‐assembly and macroscale spinodal decomposition can be employed in multicomponent BCP/hydrophilic inorganic precursor blends with homopolymers to prepare mesoporous inorganic particles with controlled meso‐ and macrostructures. The homogeneous multicomponent blend solution undergoes dual phase separation upon solvent evaporation. Microphase‐separated (BCP/inorganic precursor)‐domains are confined within the macrophase‐separated majority homopolymer matrix, being self‐organized toward particle shapes that minimize the total interfacial area/energy. The pore orientation and particle shape (solid spheres, oblate ellipsoids, hollow spheres) are tailored by changing the kind of homopolymer matrix and associated enthalpic interactions. Furthermore, the sizes of particle and hollow inner cavity are tailored by changing the relative amount of homopolymer matrix and the rates of solvent evaporation. Pyrolysis yields discrete mesoporous inorganic particles and hollow spheres. The present approach enables a high degree of control over pore structure, orientation, and size (15–44 nm), particle shape, particle size (0.6–3 µm), inner cavity size (120–700 nm), and chemical composition (e.g., aluminosilicates, carbon, and metal oxides).

     
    more » « less
  4. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less
  5. Phase separation processes are widely utilized to assemble complex fluids into novel materials. These separation processes can be thermodynamically driven due to changes in concentration, pressure, or temperature. Phase separation can also be induced with external stimuli, such as magnetic fields, resulting in novel nonequilibrium systems. However, how external stimuli influence the transition pathways between phases has not been explored in detail. Here, we describe the phase separation dynamics of superparamagnetic colloids in time-varying magnetic fields. An initially homogeneous colloidal suspension can transition from a continuous colloidal phase with voids to discrete colloidal clusters, through a bicontinuous phase formed via spinodal decomposition. The type of transition depends on the particle concentration and magnitude of the applied magnetic field. The spatiotemporal evolution of the microstructure during the nucleation and growth period is quantified by analyzing the morphology using Minkowski functionals. The characteristic length of the colloidal systems was determined to correlate with system variables such as magnetic field strength, particle concentration, and time in a power-law scaling relationship. Understanding the interplay between particle concentration and applied magnetic field allows for better control of the phases observed in these magnetically tunable colloidal systems. 
    more » « less