We present SplitFS, a file system for persistent memory (PM) that reduces software overhead significantly compared to state-of-the-art PM file systems. SplitFS presents a novel split of responsibilities between a user-space library file system and an existing kernel PM file system. The user-space library file system handles data operations by intercepting POSIX calls, memory-mapping the underlying file, and serving the read and overwrites using processor loads and stores. Metadata operations are handled by the kernel PM file system (ext4 DAX). SplitFS introduces a new primitive termed relink to efficiently support file appends and atomic data operations. SplitFS provides three consistency modes, which different applications can choose from, without interfering with each other. SplitFS reduces software overhead by up-to 4× compared to the NOVA PM file system, and 17× compared to ext4 DAX. On a number of micro-benchmarks and applications such as the LevelDB key-value store running the YCSB benchmark, SplitFS increases application performance by up to 2× compared to ext4 DAX and NOVA while providing similar consistency guarantees.
more »
« less
WineFS: a hugepage-aware file system for persistent memory that ages gracefully
Modern persistent-memory (PM) file systems perform well in benchmark settings, when the file system is freshly created and empty. But after being aged by usage, as will be the normal mode in practice, their memory-mapped performance degrades significantly. This paper shows that the cause is their inability to use 2MB hugepages to map files when aged, having to use 4KB pages instead and suffering many extra page faults and TLB misses as a result. We introduce WineFS, a novel hugepage-aware PM file system that largely eliminates this effect. WineFS combines a new alignment-aware allocator with fragmentation-avoiding approaches to consistency and concurrency to preserve the ability to use hugepages. Experiments show that WineFS resists the effects of aging and outperforms state-of-the-art PM file systems in both aged and un-aged settings. For example, in an aged setup, the LMDB memory-mapped database obtains 2× higher write throughput on WineFS compared to NOVA, and 70% higher throughput compared to ext4-DAX. When reading a memory-mapped persistent radix tree, WineFS results in 56% lower median latency than NOVA.
more »
« less
- Award ID(s):
- 1751277
- PAR ID:
- 10340421
- Date Published:
- Journal Name:
- Proceedings of the Symposium on Operating Systems Principles
- Volume:
- 2022
- ISSN:
- 0736-6663
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Persistent main memory (PM) dramatically improves IO performance. We find that this results in file systems on PM spending as much as 70% of the IO path performing file mapping (mapping file offsets to physical locations on storage media) on real workloads. However, even PM-optimized file systems perform file mapping based on decades-old assumptions. It is now critical to revisit file mapping for PM. We explore the design space for PM file mapping by building and evaluating several file-mapping designs, including different data structure, caching, as well as meta-data and block allocation approaches, within the context of a PM-optimized file system. Based on our findings, we design HashFS, a hash-based file mapping approach. HashFS uses a single hash operation for all mapping and allocation operations, bypassing the file system cache, instead prefetching mappings via SIMD parallelism and caching translations explicitly. HashFS’s resulting low latency provides superior performance compared to alternatives. HashFS increases the throughput of YCSB on LevelDB by up to 45% over page-cached extent trees in the state-of-the-art Strata PM-optimized file systemmore » « less
-
Persistent memory (PM) can be accessed directly from userspace without kernel involvement, but most PM filesystems still perform metadata operations in the kernel for secuity and rely on the kernel for cross-process synchronization. We present per-file virtualization, where a virtualization layer implements a complete set of file functionalities, including metadata management, crash consistency, and concurrency control, in userspace. We observe that not all file metadata need to be maintained by the kernel and propose embedding insensitive metadata into the file for userspace management. For crash consistency, copy-on-write (CoW) benefits from the embedding of the block mapping since the mapping can be efficiently updated without kernel involvement. For cross-process synchronization, we introduce lockfree optimistic concurrency control (OCC) at user level, which tolerates process crashes and provides better scalability. Based on per-file virtualization, we implement MadFS, a library PM filesystem that maintains the embedded metadata as a compact log. Experimental results show that on concurrent workloads, MadFS achieves up to 3.6× the throughput of ext4-DAX. For real-world applications, MadFS provides up to 48% speedup for YCSB on LevelDB and 85% for TPC-C on SQLite compared to NOVA.more » « less
-
We present Chipmunk, a new framework to test persistent-memory (PM) file systems for crash-consistency bugs. Using Chipmunk, we discovered 23 new bugs across five PM file systems; most bugs have been confirmed and fixed by developers. The discovered bugs have serious consequences, including making the file system un-mountable or breaking rename atomicity. We present a detailed study of the bugs found using Chipmunk and discuss important lessons learned for designing and testing PM file systems.more » « less
-
Fast, byte-addressable persistent memory (PM) is becoming a reality in products. However, porting legacy kernel file systems to fully support PM requires substantial effort and encounters the challenge of bridging the gap between block-based access granularity and byte-addressability. Moreover, new PM-specific file systems remain far from production-ready, preventing them from being widely used. In this paper, we propose P2CACHE, a novel in-kernel caching mechanism to explore how legacy kernel file systems can effectively evolve in the face of fast, byte-addressable PM. P2CACHE exploits a read/write-distinguishable memory hierarchy upon a tiered memory system involving both PM and DRAM. P2CACHE leverages PM to serve all write requests for instant data durability and strong crash consistency while using DRAM to serve most read I/Os for high I/O performance. Further, P2CACHE employs a simple yet effective synchronization model between PM and DRAM by leveraging device-level parallelism. Our evaluation shows that P2CACHE can significantly increase the performance of legacy kernel file systems -- e.g., by 200x for RocksDB on Ext4 -- meanwhile equipping them with instant data durability and strong crash consistency, similar to PM-specialized file systems.more » « less
An official website of the United States government

