skip to main content


Title: Childhood blood lead levels and environmental risk factors in Madagascar
One-third of children globally have blood lead levels (BLLs) exceeding the (former) US CDC reference value of 5 μg/dL; this value may be as high as one-half for children in low- and middle-income countries (LMICs). Lead exposure occurs through a variety of routes (e.g., water, dust, air), and in LMICs specifically, informal economies (e.g., battery recycling) can drive lead exposures due, in part, to absent regulation. Previous work by our team identified a ubiquitous source of lead (Pb), in the form of Pb-containing components used in manually operated pumps, in Toamasina, Madagascar. Characterization of BLLs of children exposed to this drinking water, and identification of additional exposure routes were needed. BLLs were measured for 362 children (aged 6 months to 6 years) in parallel with surveying to assess 14 risk factors related to demographics/socioeconomics, diet, use of pitcher pumps, and parental occupations. BLL data were also compared against a recent meta-review of BLLs for LMICs. Median childhood BLL (7.1 μg/dL) was consistent with those of other Sub-Saharan African LMICs (6.8 μg/dL) and generally higher than LMICs in other continents. Risk factors significantly associated (p < 0.05, univariate logistic regression) with elevated BLL (at ≥ 5 μg/dL) included male gender, living near a railway or major roadway (owing potentially to legacy lead pollution), having lower-cost flooring, daily consumption of foods (beans, vegetables, rice) commonly cooked in recycled aluminum pots (a previously identified lead source for this community), and a maternal occupation (laundry-person) associated with lower socioeconomic status (SES). Findings were similar at the ≥ 10 μg/dL BLL status. Our methods and findings may be appropriate in identifying and reducing lead exposures for children in other urbanizing cities, particularly in Sub-Saharan Africa, where lead exposure routes are complex and varied owing to informal economics and substantial legacy pollution.  more » « less
Award ID(s):
1735320
NSF-PAR ID:
10340457
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science and Pollution Research
ISSN:
0944-1344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Heavy metals are prevalent in urban settings due to many legacy and modern pollution sources, and are essential to quantify because of the adverse health effects associated with them. Of particular importance is lead (Pb), because there is no safe level of exposure, and it especially harms children. Through our partnership with community scientists in the Marion County (Indiana, United States) area (n= 162 households), we measured Pb and other heavy metal concentrations in soil, paint, and dust. Community scientists completed sampling with screening kits and samples were analyzed in the laboratory via x-ray fluorescence by researchers to quantify heavy metal concentrations, with Pb hazards reported back to participants. Results point to renters being significantly (p≤ 0.05) more likely to contain higher concentrations of Pb, zinc (Zn), and copper (Cu) in their soil versus homeowners, irrespective of soil sampling location at the home. Housing age was significantly negatively correlated with Pb and Zn in soil and Pb in dust across all homes. Analysis of paired soil, dust, and paint samples revealed several important relationships such as significant positive correlations between indoor vacuum dust Pb, dust wipe Pb, and outdoor soil Pb. Our collective results point to rental status being an important determinant of metal pollution exposure in Indianapolis, with housing age being reflective of both past and present Zn and Pb pollution at the household scale in dust and soil. Thus, future environmental pollution work examining renters versus homeowners, as well as other household data such as home condition and resident race/ethnicity, is imperative for better understanding environmental disparities surrounding not just Pb, but other heavy metals in environmental media as well.

     
    more » « less
  2. The extensive school closures due to the unprecedented COVID-19 pandemic resulted in prolonged water stagnation within schools' plumbing for longer durations than routine schools' holidays and summer breaks. With many of the U.S. schools suffering from problems of lead (Pb) in potable water for decades, the extended water stagnation caused by schools' closure has raised significant concerns regarding the schools' water safety. Thus, this research was conducted to evaluate the resiliency of schools' potable water plumbing toward the interruption caused by the COVID-19 pandemic. For this purpose, the impact of extended water stagnation on heavy metal release into water samples collected from fixtures with and without known lead problems in 25 schools within a school district in Tennessee was investigated. The results revealed a significant increase in the median Pb concentration due to the extended water stagnation. Furthermore, elevated levels of Fe, Zn, and Cu were released from both problematic and nonproblematic fixtures into tap water. Estimation of children's blood lead level (BLL), assuming the consumption of prolonged stagnated water, revealed an increased risk of elevated BLLs (>5 μg dL −1 ). To better identify the potential sources of lead release within schools, a combination of plumbing investigation and sequential water sampling was conducted. The lead-containing fixtures, connecting plumbing, and interior plumbing were found as the possible sources contributing to the lead release into water. Implementation of remediation actions reduced the lead release into tap water to less than 3.4 μg L −1 in the target fixtures. 
    more » « less
  3. Abstract

    Private wells often lack centralized oversight, drinking water quality standards, and consistent testing methodologies. For lead in well water, the lack of standardized data collection methods can impact reported measurements, which can misinform health risks. Here, we conducted a targeted community science testing of 1143 wells across 17 counties in North Carolina (USA) and compared results to state testing data primarily associated with new well construction compiled in the NCWELL database. The goal of our study was to explore the impacts of sampling methodology and household representation on estimated lead exposures and subsequent health risks. At the household scale, we illustrated how sampling and analytical techniques impact lead measurements. The community science testing first draw samples (characterizing drinking water) had a 90th percentile lead value of 12.8μg l−1while the NCWELL database flushed samples (characterizing groundwater) had a value below the reporting level of 5μg l−1. As lead was associated with the corrosion of premise plumbing, flushing prior to collection substantially reduced lead concentrations. At the community scale, we examined how the lack of representation based on household demographics and well construction characteristics impacted the knowledge of lead and blood lead level (BLL) occurrence. When simulating representative demographics of the well populations, we observed that the 90th percentile lead level could differ by up to 6μg l−1, resulting in communities being above the USEPA action level. This translated to a 1.0–1.3μg dl−1difference in predicted geometric mean BLL among infants consuming reconstituted formula. Further, inclusion of less common well construction types also increased lead in water occurrence. Overall, under- and overestimations of lead concentrations associated with differences in sampling techniques and sample representation can misinform conclusions about risks of elevated BLLs associated with drinking water from private wells which may hinder investigations of waterborne lead exposure.

     
    more » « less
  4. Exposure to lead, a toxic heavy metal, in drinking water is a worldwide problem. Lead leaching from lead service lines, the main contamination source, and other plumbing materials is controlled by the plumbosolvency of water. Square wave anodic stripping voltammetry (SWASV) has been greatly explored as a rapid and portable technique for the detection of trace Pb 2+ ions in drinking water. However, the impact of water quality parameters (WQP) on the SWASV technique is not well understood. Herein, SWASV was employed to detect 10 μg L −1 Pb 2+ and determine trends in the stripping peak changes in simulated water samples while individually varying the pH, conductivity, alkalinity, free chlorine, temperature, and copper levels. The pH and conductivity were controlled using the buffer 3-( N -morpholino)propanesulfonic acid (MOPS), and NaNO 3 , respectively and kept at pH = 7.0 and conductivity = 500 μS cm −1 when exploring other WQPs. The working electrode, a gold-nanoparticle-modified carbon nanotube fiber cross-section (AuNP-CNT f -CS) electrode provided sufficiently sharp and prominent peaks for 10 μg L −1 Pb 2+ detection as well as good reproducibility, with a relative error of 5.9% in simulated water. We found that conductivity, and temperature had a proportional relationship to the peak height, and pH, alkalinity, free chlorine, and copper had an inverse relationship. In addition, increasing the copper concentration caused broadening and shifting of the Pb 2+ stripping peak. At extremely low conductivities (<100 μS cm −1 ), the voltammograms became difficult to interpret owing to the formation of inverted and distorted peaks. These trends were then also observed within a local drinking water sample in order to validate the results. 
    more » « less
  5. Abstract

    Artisanal and small-scale gold mining (ASGM) is the largest global anthropogenic mercury (Hg) source and is widespread in the Peruvian Amazon. Consuming Hg-laden foods exposes people to this potent neurotoxin. While numerous studies have examined fish Hg content near ASGM, Hg accumulation in other commonly consumed animal- and plant-based foods from terrestrial environments is often overlooked. In this study, we aim to address understudied dietary Hg exposures. To understand Hg exposure from food staples in the Peruvian Amazon, we measured total and methyl Hg in local crops, fish, chicken meat, chicken feathers, and eggs from ASGM-impacted and upstream (reference) communities. Diet surveys were used to estimate probable weekly Hg intake from each food. Fish and chicken stable carbon and nitrogen isotope signatures were analyzed to evaluate trophic magnification. Though few crops exceeded food safety recommendations, rice methyl Hg proportions were high (84%). Trophic level was an expected key predictor of fish Hg content. 81% (17 of 21) of local carnivorous fish exceeded WHO and USEPA recommendations. Compared to upstream communities, mining-impacted communities demonstrated elevated total Hg in crops (1.55 (IQR: 0.60-3.03) μg/kg upstream versus 3.38 (IQR: 1.62-11.58) in mining areas), chicken meats (2.69 (IQR: BDL-9.96) μg/kg versus 19.68 (IQR: 6.33-48.1)), and feathers (91.20 (IQR: 39.19-216.13) μg/kg versus 329.99 (IQR: 173.22-464.99)). Chicken meats from mining areas exhibited over double the methyl Hg concentrations of those upstream. Methyl Hg fractions in chicken muscle tissue averaged 93%. Egg whites and livers exceeded Hg recommendations most frequently. Proximity to mining, but not trophic position, was a predictor of chicken Hg content. Our results demonstrate that terrestrial and aquatic foods can accumulate Hg from mining activity, introducing additional human Hg exposure routes. However, locally sourced carnivorous fish was the largest contributor to an estimated three-fold exceedance of the provisional tolerable weekly Hg intake.

     
    more » « less