The benefits of using video in teacher education as a tool for reflection and for developing professional expertise have long been recognized. Recent introduction of 360 video technology holds promise to extend these benefits as it allows prospective teachers to reflect on their own performance by considering the classroom from multiple perspectives. This study examined nine prospective secondary teachers’ (PSTs) noticing and self-reflection on the 360 recordings of their own teaching. The PSTs, enrolled in a capstone course Mathematical Reasoning and Proving for Secondary Teachers, taught a proof-oriented lesson to small groups of students in local schools while capturing their teaching with 360 video cameras. We analyzed the PSTs’ written comments on their video and reflection reports to identify the categories of noticing afforded by the 360 technology as well as the instances of PSTs’ learning. The results point to the powerful potential of 360 videos for supporting PSTs’ self-reflection and professional growth.
more »
« less
Noticing mathematics from multiple perspectives
A key aspect of professional noticing includes attending to students’ mathematics (Jacobs et al., 2010). Initially, preservice teachers (PSTs) may attend to non-mathematics specific aspects of a classroom before attending to children’s procedures and then, eventually their conceptual reasoning (Barnhart & van Es, 2015). Use of 360 videos has been observed to increase the likelihood that PSTs will attend to more mathematics-specific student actions. This is due to an increased perceptual capacity, or the capacity of a representation to convey what is perceivable in a scenario (Kosko et al., in press). A 360 camera records a classroom omnidirectionally, allowing PSTs viewing the video to look in any direction. Moreover, several 360 cameras can be used in a single room to allow the viewer to move from one point in the recorded classroom to another; defined by Zolfaghari et al., 2020 as multi-perspective 360 video. Although multiperspective 360 has tremendous potential for immersion and presence (Gandolfi et al., 2021), we have not located empirical research clarifying whether or how this may affect PSTs’ professional noticing. Rather, most published research focuses on the use of a single camera. Given the dearth of research, we explored PSTs’ viewing of and teacher noticing related to a six-camera multiperspective 360 video. We examined 22 early childhood PSTs’ viewing of a 4th grade class using pattern blocks to find an equivalent fraction to 3/4. Towards the end of the video, one student suggested 8/12 as an equivalent fraction, but a peer claimed it was 9/12. The teacher prompts the peer to “prove it” and a brief discussion ensues before the video ends. After viewing the video, PSTs’ written noticings were solicited and coded. In our initial analysis, we examined whether PSTs attended to students’ fraction reasoning. Although many PSTs attended to whether 8/12 or 9/12 was the correct answer, only 7 of 22 attended to students’ part-whole reasoning of the fractions. Next, we examined the variance in how frequently PSTs switched their camera perspective using the unalikeability statistic. Unalikeability (U2) is a nonparametric measure of variance, ranging from 0 to 1, for nominal variables (Kader & Perry, 2007). Participants scores ranged from 0 to 0.80 (Median=0.47). We then compared participants’ U2 statistics for whether they attended (or not) to students mathematical reasoning in their written noticing. Findings revealed no statistically significant difference (U=38.5, p=0.316). On average, PSTs used 2-3 camera perspectives, and there was no observable benefit to using a higher number of cameras. These findings suggest that multiple perspectives may be useful for some, but not all PSTs’.
more »
« less
- Award ID(s):
- 1908159
- PAR ID:
- 10340470
- Editor(s):
- Olanoff, D.; Johnson, K.; Spitzer, S.
- Date Published:
- Journal Name:
- Psychology of Mathematics Education - North America
- Volume:
- 43
- Page Range / eLocation ID:
- 1787-1788
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Use of video as a representation of practice in teacher education is commonplace. The current study explored the use of a new format (360 video) in the context of preservice teachers’ professional noticing. Findings suggest that preservice teachers viewing 360 videos attended to more student actions than their peers viewing standard video. In addition, using a virtual reality headset to view the 360 videos led to different patterns in where preservice teachers looked in the recorded classroom, and to increased specificity of mathematics content from the scenario. Thus, findings and results support the use of 360 video in teacher education to facilitate teacher noticing. However, future research is needed to further explore this novel technology.more » « less
-
Abstract The practice of teacher noticing students' mathematical thinking often includes three interrelated components: attending to students' strategies, interpreting students' understandings, and deciding how to respond on the basis of students' understanding. This practice gains complexity in technology‐mediated environments (i.e., using technology‐enhanced math tasks) because it requires attending to and interpreting students' engagement with technology. Current frameworks implicitly assume the practice includes noticing the ways students use tools (including technology tools) in their work, but do not explicitly highlight the role of the tool. While research has shown that using these frameworks supports preservice secondary mathematics teachers (PSTs) developing noticing practices, it has also shown that PSTs largely overlook students' technology engagement when they are working on technology‐enhanced tasks (Journal for Research in Mathematics Education, 2010; 41(2):169–202). In this article, we describe our adaptation of Jacobs et al.'s framework for teacher noticing student mathematical thinking to include a focus on making students' technology‐tool engagement explicit when noticing in technology‐mediated environments, the Noticing in Technology‐Mediated Environments (NITE) framework. We describe the theoretical foundations of the framework, provide a video case example, and then illustrate how the framework can be used by mathematics teacher educators to support PSTs' noticing when students are working in technology‐mediated environments.more » « less
-
Herron, J. (Ed.)Teacher noticing is a crucial facet of math and science teacher education, with one goal being to shift preservice teachers’ (PSTs) noticing from teacher-centered to student-centered. In this study, we used 360 videos to examine PSTs’ choices of where to look in a classroom. We discuss differences in attending behavior of those PSTs who focused on the specific themes of teachers’ scaffolding and student engagement.more » « less
-
Olanoff, D.; Johnson, K.; Spitzer, S. (Ed.)Attending to students’ actions and mathematical thinking is an important aspect of professional teacher noticing. In this paper, we used 360 videos as a medium to examine the relationship between preservice teachers’(PSTs) observed attending behaviors and their written noticing. Findings suggest that PSTs focusing on students, instead of the teacher, during class discussions provide more specified descriptions of children’s mathematical thinking.more » « less
An official website of the United States government

