In this paper, we present OpenWaters, a real-time open-source underwater simulation kit for generating photorealistic underwater scenes. OpenWaters supports creation of massive amount of underwater images by emulating diverse real-world conditions. It allows for fine controls over every variable in a simulation instance, including geometry, rendering parameters like ray-traced water caustics, scattering, and ground-truth labels. Using underwater depth (distance between camera and object) estimation as the use-case, we showcase and validate the capabilities of OpenWaters to model underwater scenes that are used to train a deep neural network for depth estimation. Our experimental evaluation demonstrates depth estimation using synthetic underwater images with high accuracy, and feasibility of transfer-learning of features from synthetic to real-world images.
more »
« less
SuperCaustics: Real-time, open-source simulation of transparent objects for deep learning applications
Transparent objects are a very challenging problem in computer vision. They are hard to segment or classify due to their lack of precise boundaries, and there is limited data available for training deep neural networks. As such, current solutions for this problem employ rigid synthetic datasets, which lack flexibility and lead to severe performance degradation when deployed on real-world scenarios. In particular, these synthetic datasets omit features such as refraction, dispersion and caustics due to limitations in the rendering pipeline. To address this issue, we present SuperCaustics, a real-time, open-source simulation of transparent objects designed for deep learning applications. SuperCaustics features extensive modules for stochastic environment creation; uses hardware ray-tracing to support caustics, dispersion, and refraction; and enables generating massive datasets with multi-modal, pixel-perfect ground truth annotations. To validate our proposed system, we trained a deep neural network from scratch to segment transparent objects in difficult lighting scenarios. Our neural network achieved performance comparable to the state-of-the-art on a real-world dataset using only 10% of the training data and in a fraction of the training time. Further experiments show that a model trained with SuperCaustics can segment different types of caustics, even in images with multiple overlapping transparent objects. To the best of our knowledge, this is the first such result for a model trained on synthetic data. Both our open-source code and experimental data are freely available online.
more »
« less
- Award ID(s):
- 1849946
- PAR ID:
- 10340611
- Date Published:
- Journal Name:
- 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)
- Page Range / eLocation ID:
- 649 to 655
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose Deep Estimators of Features (DEFs), a learning-based framework for predicting sharp geometric features in sampled 3D shapes. Differently from existing data-driven methods, which reduce this problem to feature classification, we propose to regress a scalar field representing the distance from point samples to the closest feature line on local patches. Our approach is the first that scales to massive point clouds by fusing distance-to-feature estimates obtained on individual patches. We extensively evaluate our approach against related state-of-the-art methods on newly proposed synthetic and real-world 3D CAD model benchmarks. Our approach not only outperforms these (with improvements in Recall and False Positives Rates), but generalizes to real-world scans after training our model on synthetic data and fine-tuning it on a small dataset of scanned data. We demonstrate a downstream application, where we reconstruct an explicit representation of straight and curved sharp feature lines from range scan data. We make code, pre-trained models, and our training and evaluation datasets available at https://github.com/artonson/def.more » « less
-
Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semisupervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.more » « less
-
Arai, Igor (Ed.)This research explores practical applications of Transfer Learning and Spatial Attention mechanisms using pre-trained models from an open-source simulator, CARLA (Car Learning to Act). The study focuses on vehicle tracking using aerial images, utilizing transformers and graph algorithms for keypoint detection. The proposed detector training process optimizes model parameters without heavy reliance on manually set hyperparameters. The loss function considers both class distribution and position localization of ground truth data. The study utilizes a three-stage methodology: pre-trained model selection, fine-tuning with a custom synthetic dataset, and evaluation using real-world aerial datasets. The results demonstrate the effectiveness of our synthetic transformer-based transfer learning technique in enhancing object detection accuracy and localization. When tested with real-world images, our approach achieved an 88% detection, compared to only 30% when using YOLOv8. The findings underscore the advantages of incorporating graph-based loss functions in transfer learning and position-encoding techniques, demonstrating their effectiveness in realistic machine learning applications with unbalanced classes.more » « less
-
Kohei, Arai (Ed.)This research explores practical applications of Transfer Learning and Spatial Attention mechanisms using pre-trained models from an open-source simulator, CARLA (Car Learning to Act). The study focuses on vehicle tracking using aerial images, utilizing transformers and graph algorithms for keypoint detection. The proposed detector training process optimizes model parameters without heavy reliance on manually set hyperparameters. The loss function considers both class distribution and position localization of ground truth data. The study utilizes a three-stage methodology: pre-trained model selection, fine-tuning with a custom synthetic dataset, and evaluation using real-world aerial datasets. The results demonstrate the effectiveness of our synthetic transformer-based transfer learning technique in enhancing object detection accuracy and localization. When tested with real-world images, our approach achieved an 88% detection, compared to only 30% when using YOLOv8. The findings underscore the advantages of incorporating graph-based loss functions in transfer learning and position-encoding techniques, demonstrating their effectiveness in realistic machine learning applications with unbalanced classes.more » « less