skip to main content


Title: Eye tracking: empirical foundations for a minimal reporting guideline
Abstract In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section “An empirically based minimal reporting guideline”).  more » « less
Award ID(s):
1855756
NSF-PAR ID:
10340701
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Behavior Research Methods
ISSN:
1554-3528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section “An empirically based minimal reporting guideline”). 
    more » « less
  2. Importance The marketing of health care devices enabled for use with artificial intelligence (AI) or machine learning (ML) is regulated in the US by the US Food and Drug Administration (FDA), which is responsible for approving and regulating medical devices. Currently, there are no uniform guidelines set by the FDA to regulate AI- or ML-enabled medical devices, and discrepancies between FDA-approved indications for use and device marketing require articulation. Objective To explore any discrepancy between marketing and 510(k) clearance of AI- or ML-enabled medical devices. Evidence Review This systematic review was a manually conducted survey of 510(k) approval summaries and accompanying marketing materials of devices approved between November 2021 and March 2022, conducted between March and November 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Analysis focused on the prevalence of discrepancies between marketing and certification material for AI/ML enabled medical devices. Findings A total of 119 FDA 510(k) clearance summaries were analyzed in tandem with their respective marketing materials. The devices were taxonomized into 3 individual categories of adherent, contentious, and discrepant devices. A total of 15 devices (12.61%) were considered discrepant, 8 devices (6.72%) were considered contentious, and 96 devices (84.03%) were consistent between marketing and FDA 510(k) clearance summaries. Most devices were from the radiological approval committees (75 devices [82.35%]), with 62 of these devices (82.67%) adherent, 3 (4.00%) contentious, and 10 (13.33%) discrepant; followed by the cardiovascular device approval committee (23 devices [19.33%]), with 19 of these devices (82.61%) considered adherent, 2 contentious (8.70%) and 2 discrepant (8.70%). The difference between these 3 categories in cardiovascular and radiological devices was statistically significant ( P  < .001). Conclusions and Relevance In this systematic review, low adherence rates within committees were observed most often in committees with few AI- or ML-enabled devices. and discrepancies between clearance documentation and marketing material were present in one-fifth of devices surveyed. 
    more » « less
  3. Recently, eye-tracking analysis for finding the cognitive load and stress while problem-solving on the whiteboard during a technical interview is finding its way in software engineering society. However, there is no empirical study on analyzing how much the interview setting characteristics affect the eye-movement measurements. Without knowing that, the results of a research on eye-movement measurements analysis for stress detection will not be reliable. In this paper, we analyzed the eye-movements of 11 participants in two interview settings, one on the whiteboard and the other on the paper, to find out if the characteristics of the interview settings affect the analysis of participants' stress. To this end, we applied 7 Machine Learning classification algorithms on three different labeling strategies of the data to suggest researchers of the domain a useful practice of checking the reliability of the eye-measurements before reporting any results. 
    more » « less
  4. Zhang, Yuji (Ed.)
    In recent years, United States federal funding agencies, including the National Institutes of Health (NIH) and the National Science Foundation (NSF), have implemented public access policies to make research supported by funding from these federal agencies freely available to the public. Enforcement is primarily through annual and final reports submitted to these funding agencies, where all peer-reviewed publications must be registered through the appropriate mechanism as required by the specific federal funding agency. Unreported and/or incorrectly reported papers can result in delayed acceptance of annual and final reports and even funding delays for current and new research grants. So, it’s important to make sure every peer-reviewed publication is reported properly and in a timely manner. For large collaborative research efforts, the tracking and proper registration of peer-reviewed publications along with generation of accurate annual and final reports can create a large administrative burden. With large collaborative teams, it is easy for these administrative tasks to be overlooked, forgotten, or lost in the shuffle. In order to help with this reporting burden, we have developed the Academic Tracker software package, implemented in the Python 3 programming language and supporting Linux, Windows, and Mac operating systems. Academic Tracker helps with publication tracking and reporting by comprehensively searching major peer-reviewed publication tracking web portals, including PubMed, Crossref, ORCID, and Google Scholar, given a list of authors. Academic Tracker provides highly customizable reporting templates so information about the resulting publications is easily transformed into appropriate formats for tracking and reporting purposes. The source code and extensive documentation is hosted on GitHub ( https://moseleybioinformaticslab.github.io/academic_tracker/ ) and is also available on the Python Package Index ( https://pypi.org/project/academic_tracker ) for easy installation. 
    more » « less
  5. We introduce WebGazer, an online eye tracker that uses common webcams already present in laptops and mobile devices to infer the eye-gaze locations of web visitors on a page in real time. The eye tracking model self-calibrates by watching web visitors interact with the web page and trains a mapping between features of the eye and positions on the screen. This approach aims to provide a natural experience to everyday users that is not restricted to laboratories and highly controlled user studies. WebGazer has two key components: a pupil detector that can be combined with any eye detection library, and a gaze estimator using regression analysis informed by user interactions. We perform a large remote online study and a small in-person study to evaluate WebGazer. The findings show that WebGazer can learn from user interactions and that its accuracy is sufficient for approximating the user's gaze. As part of this paper, we release the first eye tracking library that can be easily integrated in any website for real-time gaze interactions, usability studies, or web research. 
    more » « less