Abstract Chiral and achiral substituted isothiourea catalysts were synthesized and employed in model silylation reactions to understand how changing the electronics on the catalyst core affected intermolecular interactions between catalyst intermediates and substrates, ultimately affecting selectivity and rate. Five different chiral catalysts were utilized in a silylation‐based kinetic resolution of 2‐(para substituted)phenylcyclohexanols and the rate of silylation of these same alcohols was investigated with three different achiral catalysts. Linear free energy relationships were examined, highlighting that rate and selectivity were highly dependent on the electronics of the catalyst and the substrate, and that both affected the intermolecular interactions that resulted.
more »
« less
Mechanistic investigations of alcohol silylation with isothiourea catalysts
The mechanism of the asymmetric silylation of alcohols with isothiourea catalysts was studied by employing reaction progress kinetic analysis. These reactions were developed by the Wiskur group, and use triphenyl silyl chloride and chiral isothiourea catalysts to silylate the alcohols. While the order of most reaction components was as expected (catalyst, amine base, alcohol), the silyl chloride was determined to be a higher order. This suggested a multistep mechanism between the catalyst and silyl chloride, with the second equivalent of silyl chloride assisting in the formation of the reactive intermediate leading to the rate-determining step. Through the addition of additives and investigating changes in the silyl chloride, an understanding of the catalyst equilibrium emerged for this reaction and provided pathways for further reaction development.
more »
« less
- PAR ID:
- 10340782
- Date Published:
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 19
- Issue:
- 46
- ISSN:
- 1477-0520
- Page Range / eLocation ID:
- 10181 to 10188
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A C-N cross-coupling approach involving oxidative amidations of aromatic aldehydes in the presence of an amide-based nickel(II) pincer catalyst (2) is demonstrated. Upon optimization, quick reaction times (15 min) and an ideal temperature (25 °C) were established and implemented for the conversion of 33 different amide products using only 0.2 mol% of catalyst. Moderate to good turnover numbers (TONs) were obtained for secondary benzamide products, and moderate TONs were obtained for tertiary benzamide products, with the highest turnover number calculated for the 4-chloro-N-(3-phenylpropyl)benzamide product (4i, 309). Gas chromatographic–mass spectrometric (GC–MS) analysis also indicates the formation of alcohols in different reactions, indicating an oxidative amidation process. Kinetic studies were performed by varying the amount of catalyst, aldehyde, LiHMDS base, and amine substrate to determine the order of reaction for each component. Benzaldehyde and benzaldehyde-d6 were reacted with benzylamine, and the kH/kD ratio was determined to understand the rate-determining step. Isotope labeling further revealed that deuterium was being transferred to both the alcohol side product and the target amide product. With the help of kinetic data and UV–visible spectra, a mechanism for the amidation process via the catalyst (2) is proposed through a Ni(I)–Ni(III) pathway.more » « less
-
Parahydrogen-induced polarization (PHIP) is a powerful technique for studying hydrogenation reactions in gas and liquid phases. Pairwise addition of parahydrogen to the hydrogenation substrate imparts nuclear spin order to reaction products, manifested as enhanced 1 H NMR signals from the nascent proton sites. Nanoscale metal catalysts immobilized on supports comprise a promising class of catalysts for producing PHIP effects; however, on such catalysts the percentage of substrates undergoing the pairwise addition route—a necessary condition for observing PHIP—is usually low. In this paper, we present a systematic study of several metal catalysts (Rh, Pt, Pd, and Ir) supported on TiO 2 in liquid-phase hydrogenation of different prototypical phenylalkynes (phenylacetylene, 1-phenyl-1-propyne, and 3-phenyl-1-propyne) with parahydrogen. Catalyst activity and selectivity were found to be affected by both the nature of the active metal and the percentage of metal loading. It was demonstrated that the optimal catalyst for production of hyperpolarized products is Rh/TiO 2 with 4 wt% metal loading, whereas Pd/TiO 2 provided the greatest selectivity for semihydrogenation of phenylalkynes. In a study of liquid-phase hydrogenation reaction kinetics, it was shown that reaction order with respect to hydrogen is nearly the same for pairwise and non-pairwise H 2 addition—consistent with a similar nature of the catalytically active sites for these reaction pathways.more » « less
-
null (Ed.)Herein, we report a new protocol for the dehydrogenative oxidation of aryl methanols using the cheap and commercially available catalyst CuSeO 3 ·2H 2 O. Oxygen-bridged [Cu–O–Se] bimetallic catalysts are not only less expensive than other catalysts used for the dehydrogenative oxidation of aryl alcohols, but they are also effective under mild conditions and at low concentrations. The title reaction proceeds with a variety of aromatic and heteroaromatic methanol examples, obtaining the corresponding carbonyls in high yields. This is the first example using an oxygen-bridged copper-based bimetallic catalyst [Cu–O–Se] for dehydrogenative benzylic oxidation. Computational DFT studies reveal simultaneous H-transfer and Cu–O bond breaking, with a transition-state barrier height of 29.3 kcal mol −1 .more » « less
-
The synthesis of alkylphosphine-substituted α-diimine (DI) ligands and their subsequent addition to Ni(COD) 2 allowed for the preparation of ( iPr2PPr DI)Ni and ( tBu2PPr DI)Ni . The solid state structures of both compounds were found to feature a distorted tetrahedral geometry that is largely consistent with the reported structure of the diphenylphosphine-substituted variant, ( Ph2PPr DI)Ni . To explore and optimize the synthetic utility of this catalyst class, all three compounds were screened for benzaldehyde hydrosilylation activity at 1.0 mol% loading over 3 h at 25 °C. Notably, ( Ph2PPr DI)Ni was found to be the most efficient catalyst while phenyl silane was the most effective reductant. A broad scope of aldehydes and ketones were then hydrosilylated, and the silyl ether products were hydrolyzed to afford alcohols in good yield. When attempts were made to explore ester reduction, inefficient dihydrosilylation was noted for ethyl acetate and no reaction was observed for several additional substrates. However, when an equimolar solution of allyl acetate and phenyl silane was added to 1.0 mol% ( Ph2PPr DI)Ni , complete ester C–O bond hydrosilylation was observed within 30 min at 25 °C to generate propylene and PhSi(OAc) 3 . The scope of this reaction was expanded to include six additional allyl esters, and under neat conditions, turnover frequencies of up to 990 h −1 were achieved. This activity is believed to be the highest reported for transition metal-catalyzed ester C–O bond hydrosilylation. Proposed mechanisms for ( Ph2PPr DI)Ni -mediated carbonyl and allyl ester C–O bond hydrosilylation are also discussed.more » « less
An official website of the United States government

