skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Detecting Low Surface Brightness Galaxies with Mask R-CNN
Low surface brightness galaxies (LSBGs), galaxies that are fainter than the dark night sky, are famously difficult to detect. Nonetheless, studies of these galaxies are essential to improve our understanding of the formation and evolution of low-mass galaxies. In this work, we train a deep learning model using the Mask R-CNN framework on a set of simulated LSBGs inserted into images from the Dark Energy Survey (DES) Data Release 2 (DR2). This deep learning model is combined with several conventional image pre-processing steps to develop a pipeline for the detection of LSBGs. We apply this pipeline to the full DES DR2 coadd image dataset, and preliminary results show the detection of 22 large, high-quality LSBG candidates that went undetected by conventional algorithms. Furthermore, we find that the performance of our algorithm is greatly improved by including examples of false positives as an additional class during training.  more » « less
Award ID(s):
2006340
NSF-PAR ID:
10340970
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Workshop at the 35th Conference on Neural Information Processing Systems (NeurIPS)
Page Range / eLocation ID:
111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The Chinese Space Station Telescope (CSST) is scheduled to launch soon, which is expected to provide a vast amount of image potentially containing low-surface brightness galaxies (LSBGs). However, detecting and characterizing LSBGs is known to be challenging due to their faint surface brightness, posing a significant hurdle for traditional detection methods. In this paper, we propose LSBGnet, a deep neural network specifically designed for automatic detection of LSBGs. We established LSBGnet-SDSS model using data set from the Sloan Digital Sky Survey (SDSS). The results demonstrate a significant improvement compared to our previous work, achieving a recall of 97.22 per cent and a precision of 97.27 per cent on the SDSS test set. Furthermore, we use the LSBGnet-SDSS model as a pre-training model, employing transfer learning to retrain the model with LSBGs from Dark Energy Survey (DES), and establish the LSBGnet-DES model. Remarkably, after retraining the model on a small DES sample, it achieves over 90 per cent precision and recall. To validate the model’s capabilities, we utilize the trained LSBGnet-DES model to detect LSBG candidates within a selected 5 sq. deg area in the DES footprint. Our analysis reveals the detection of 204 LSBG candidates, characterized by a mean surface brightness range of $23.5\ \mathrm{ mag}\ \mathrm{ arcsec}^{-2}\le \bar{\mu }_{\text{eff}}(g)\le 26.8\ \mathrm{ mag}\ \mathrm{ arcsec}^{-2}$ and a half-light radius range of 1.4 arcsec ≤ r1/2 ≤ 8.3 arcsec. Notably, 116 LSBG candidates exhibit a half-light radius ≥2.5 arcsec. These results affirm the remarkable performance of our model in detecting LSBGs, making it a promising tool for the upcoming CSST.

     
    more » « less
  2. ABSTRACT

    In this work, we explore the possibility of applying machine learning methods designed for 1D problems to the task of galaxy image classification. The algorithms used for image classification typically rely on multiple costly steps, such as the point spread function deconvolution and the training and application of complex Convolutional Neural Networks of thousands or even millions of parameters. In our approach, we extract features from the galaxy images by analysing the elliptical isophotes in their light distribution and collect the information in a sequence. The sequences obtained with this method present definite features allowing a direct distinction between galaxy types. Then, we train and classify the sequences with machine learning algorithms, designed through the platform Modulos AutoML. As a demonstration of this method, we use the second public release of the Dark Energy Survey (DES DR2). We show that we are able to successfully distinguish between early-type and late-type galaxies, for images with signal-to-noise ratio greater than 300. This yields an accuracy of $86{{\ \rm per\ cent}}$ for the early-type galaxies and $93{{\ \rm per\ cent}}$ for the late-type galaxies, which is on par with most contemporary automated image classification approaches. The data dimensionality reduction of our novel method implies a significant lowering in computational cost of classification. In the perspective of future data sets obtained with e.g. Euclid and the Vera Rubin Observatory, this work represents a path towards using a well-tested and widely used platform from industry in efficiently tackling galaxy classification problems at the peta-byte scale.

     
    more » « less
  3. Wide-field astronomical surveys are often affected by the presence of undesirable reflections (often known as “ghosting artifacts” or “ghosts”) and scattered-light artifacts. The identification and mitigation of these artifacts is important for rigorous astronomical analyses of faint and low-surface-brightness systems. In this work, we use images from the Dark Energy Survey (DES) to train, validate, and test a deep neural network (Mask R-CNN) to detect and localize ghosts and scatteredlight artifacts. We find that the ability of the Mask R-CNN model to identify affected regions is superior to that of conventional algorithms that model the physical processes that lead to such artifacts, thus providing a powerful technique for the automated detection of ghosting and scattered-light artifacts in current and near-future surveys. 
    more » « less
  4. null (Ed.)
    Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample and to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date. 
    more » « less
  5. ABSTRACT We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds. 
    more » « less