Wide-field astronomical surveys are often affected by the presence of undesirable reflections (often known as “ghosting artifacts” or “ghosts”) and scattered-light artifacts. The identification and mitigation of these artifacts is important for rigorous astronomical analyses of faint and low-surface-brightness systems. In this work, we use images from the Dark Energy Survey (DES) to train, validate, and test a deep neural network (Mask R-CNN) to detect and localize ghosts and scatteredlight artifacts. We find that the ability of the Mask R-CNN model to identify affected regions is superior to that of conventional algorithms that model the physical processes that lead to such artifacts, thus providing a powerful technique for the automated detection of ghosting and scattered-light artifacts in current and near-future surveys.
more »
« less
Detecting Low Surface Brightness Galaxies with Mask R-CNN
Low surface brightness galaxies (LSBGs), galaxies that are fainter than the dark night sky, are famously difficult to detect. Nonetheless, studies of these galaxies are essential to improve our understanding of the formation and evolution of low-mass galaxies. In this work, we train a deep learning model using the Mask R-CNN framework on a set of simulated LSBGs inserted into images from the Dark Energy Survey (DES) Data Release 2 (DR2). This deep learning model is combined with several conventional image pre-processing steps to develop a pipeline for the detection of LSBGs. We apply this pipeline to the full DES DR2 coadd image dataset, and preliminary results show the detection of 22 large, high-quality LSBG candidates that went undetected by conventional algorithms. Furthermore, we find that the performance of our algorithm is greatly improved by including examples of false positives as an additional class during training.
more »
« less
- Award ID(s):
- 2006340
- PAR ID:
- 10340970
- Date Published:
- Journal Name:
- Workshop at the 35th Conference on Neural Information Processing Systems (NeurIPS)
- Page Range / eLocation ID:
- 111
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a catalog of 1.4 million photometrically selected quasar candidates in the southern hemisphere over the ∼5000 deg2Dark Energy Survey (DES) wide survey area. We combine optical photometry from the DES second data release (DR2) with available near-infrared (NIR) and the all-sky unWISE mid-infrared photometry in the selection. We build models of quasars, galaxies, and stars with multivariate skew-tdistributions in the multidimensional space of relative fluxes as functions of redshift (or color for stars) and magnitude. Our selection algorithm assigns probabilities for quasars, galaxies, and stars and simultaneously calculates photometric redshifts (photo-z) for quasar and galaxy candidates. Benchmarking on spectroscopically confirmed objects, we successfully classify (with photometry) 94.7% of quasars, 99.3% of galaxies, and 96.3% of stars when all IR bands (NIRYJHKand WISE W1W2) are available. The classification and photo-zregression success rates decrease when fewer bands are available. Our quasar (galaxy) photo-zquality, defined as the fraction of objects with the difference between the photo-z zpand the spectroscopic redshiftzs, ∣Δz∣ ≡ ∣zs−zp∣/(1 +zs) ≤ 0.1, is 92.2% (98.1%) when all IR bands are available, decreasing to 72.2% (90.0%) using optical DES data only. Our photometric quasar catalog achieves an estimated completeness of 89% and purity of 79% atr< 21.5 (0.68 million quasar candidates), with reduced completeness and purity at 21.5 <r≲ 24. Among the 1.4 million quasar candidates, 87,857 have existing spectra, and 84,978 (96.7%) of them are spectroscopically confirmed quasars. Finally, we provide quasar, galaxy, and star probabilities for all (0.69 billion) photometric sources in the DES DR2 coadded photometric catalog.more » « less
-
null (Ed.)Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample and to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date.more » « less
-
ABSTRACT We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($$M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$$; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds.more » « less
-
null (Ed.)ABSTRACT For ground-based optical imaging with current CCD technology, the Poisson fluctuations in source and sky background photon arrivals dominate the noise budget and are readily estimated. Another component of noise, however, is the signal from the undetected population of stars and galaxies. Using injection of artifical galaxies into images, we demonstrate that the measured variance of galaxy moments (used for weak gravitational lensing measurements) in Dark Energy Survey (DES) images is significantly in excess of the Poisson predictions, by up to 30 per cent, and that the background sky levels are overestimated by current software. By cross-correlating distinct images of ‘empty’ sky regions, we establish that there is a significant image noise contribution from undetected static sources (US), which, on average, are mildly resolved at DES resolution. Treating these US as a stationary noise source, we compute a correction to the moment covariance matrix expected from Poisson noise. The corrected covariance matrix matches the moment variances measured on the injected DES images to within 5 per cent. Thus, we have an empirical method to statistically account for US in weak lensing measurements, rather than requiring extremely deep sky simulations. We also find that local sky determinations can remove most of the bias in flux measurements, at a small penalty in additional, but quantifiable, noise.more » « less
An official website of the United States government

