skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Nozzle Inlet Size and Curvature on the Cyclonic Flowfield in a Bidirectional Vortex Chamber Using Velocity Inlet Conditions
Award ID(s):
1761675
PAR ID:
10340990
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AIAA AVIATION 2022 FORUM
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study aims to identify the natural processes and the subsequent responses to coastal engineering and development on the alongshore evolution of the IB-BI-LBI inlet-barrier system. The primary focus will be the quantification of barrier island and inlet sediment partitioning at decadal to centennial timescales, from 1839-1941. We analyze historical alongshore evolution and track coastal engineering efforts at the Island Beach–Barnegat Inlet–Long Beach Island, NJ barrier-inlet system, which has transitioned from natural to highly developed over the past 180 years. We build a quantitative mass-balance framework that tracks sediment reservoir volumes and transport fluxes within the barrier-inlet system to describe both the natural and developed alongshore evolution of this system. We find that minor coastal engineering efforts, including the construction of small-scale wood and stone jetties, not only shift sediment transport locally, but also shift system-wide sediment transport based on inlet-barrier island interactions and sediment partitioning. Better understanding these different modes of past evolution can help to guide coastal management strategies as beach nourishment increases in cost, sea level-rise accelerates, and extreme storm patterns change. 
    more » « less
  2. In this study, ADCIRC is configured to run using a test mesh based on the Shinnecock Inlet on the Outer Barrier of Long Island, NY, USA. External forcing for the model is given by tidal forcing reconstructed from the TPXO9.1 harmonic tidal constituents using OceanMesh2D, constant air pressure of 1013 millibars, and free surface stress from winds computed from a 0.25 deg hourly CFSv2 10-m wind fields for a period of 16 days (29 December 2017 - 31 January 2018). Winds are modified for the purposes of the numerical experiment to simulate a more extreme (Category 4) event, with winds scaled radially down to zero from the point of interest, i.e. the center of the inlet (see figure in figures folder). Water elevation at an artificial recording station inside the inlet was recorded over a period of 14 days (1 January 2018 - 14 January 2018) at 3 hour intervals for different wind drag parameter samples. These water elevation values and wind drag parameters, compiled into a singular dataset, is then used to solve inverse problems. 
    more » « less
  3. Abstract. Aircraft-based measurements enable large-scale characterization of gas-phase atmospheric composition, but these measurements are complicated by the challenges of sampling from high-speed flow. Under such sampling conditions, the sample flow will likely experience turbulence, accelerating and mixing of potential contamination of the gas-phase from the condensed-phase components on walls, and reduced vapor transmission due to losses to the inner walls of the sampling line. While a significant amount of research has gone into understanding aerosol sampling efficiency for aircraft inlets, a similar research investment has not been made for gas sampling. Here, we analyze the performance of a forward-facing laminar flow gas inlet to establish its performance as a function of operating conditions, including ambient pressure, freestream velocities, and sampling conditions. Using computational fluid dynamics (CFD) modeling we simulate flow inside and outside the inlet to determine the extent of freestream turbulent interaction with the sample flow and its implication for gas sample transport. The CFD results of flow features in the inlet are compared against measurements of air speed and turbulent intensity from full-sized high-speed wind tunnel experiments. These comparisons suggest that the Reynolds-averaged Navier–Stokes (RANS) CFD simulations using the shear stress transport (SST) modeling approach provide the most reasonable prediction of the turbulence characteristics of the inlet. 
    more » « less
  4. Abstract. Aircraft-based measurements enable large-scale characterization of gas-phase atmospheric composition, but these measurements are complicated by the challenges of sampling from high-speed flow. Under such sampling conditions, the sample flow will likely experience turbulence, accelerating | mixing of potential contamination of the gas-phase from the condensed-phase components on walls and reduced vapor transmission due to losses to the inner walls of the sampling line. While a significant amount of research has gone into understanding aerosol sampling efficiency for aircraft inlets, a similar research investment has not been made for gas sampling. Here, we analyze the performance of a forward-facing laminar flow gas inlet to establish its performance as a function of operating conditions, including ambient pressure, freestream velocities, and sampling conditions. Using computational fluid dynamics (CFD) modeling we simulate flow inside and outside the inlet to determine the extent of freestream turbulent interaction with the sample flow and its implication for gas sample transport. The CFD results of flow features in the inlet are compared against measurements of air speed and turbulent intensity from full-sized high-speed wind-tunnel experiments. These comparisons suggest that the Reynolds Averaged Navier-Stokes (RANS) CFD simulations using the Shear Stress Transport (SST) modeling approach provide the most reasonable prediction of the turbulence characteristics of the inlet. 
    more » « less
  5. null (Ed.)
    Abstract Cook Inlet fore‐arc basin in south‐central Alaska is a large, deep (7.6 km) sedimentary basin with the Anchorage metropolitan region on its margins. From 2015 to 2017, a set of 28 broadband seismic stations was deployed in the region as part of the Southern Alaska Lithosphere and Mantle Observation Network (SALMON) project. The SALMON stations, which also cover the remote western portion of Cook Inlet basin and the back‐arc region, form the basis for our observational study of the seismic response of Cook Inlet basin. We quantify the influence of Cook Inlet basin on the seismic wavefield using three data sets: (1) ambient‐noise amplitudes of 18 basin stations relative to a nonbasin reference station, (2) earthquake ground‐motion metrics for 34 crustal and intraslab earthquakes, and (3) spectral ratios (SRs) between basin stations and nonbasin stations for the same earthquakes. For all analyses, we examine how quantities vary with the frequency content of the seismic signal and with the basin depth at each station. Seismic waves from earthquakes and from ambient noise are amplified within Cook Inlet basin. At low frequencies (0.1–0.5 Hz), ambient‐noise ratios and earthquake SRs are in a general agreement with power amplification of 6–14 dB, corresponding to amplitude amplification factors of 2.0–5.0. At high frequencies (0.5–4.0 Hz), the basin amplifies the earthquake wavefield by similar factors. Our results indicate stronger amplification for the deeper basin stations such as near Nikiski on the Kenai Peninsula and weaker amplification near the margins of the basin. Future work devoted to 3D wavefield simulations and treatment of source and propagation effects should improve the characterization of the frequency‐dependent response of Cook Inlet basin to recorded and scenario earthquakes in the region. 
    more » « less