skip to main content


Title: Climate Change‐Legacy Phosphorus Synergy Hinders Lake Response to Aggressive Water Policy Targets
Abstract

With mounting scientific evidence demonstrating adverse global climate change (GCC) impacts to water quality, water quality policies, such as the Total Maximum Daily Loads (TMDLs) under the U.S. Clean Water Act, have begun accounting for GCC effects in setting nutrient load‐reduction policy targets. These targets generally require nutrient reductions for attaining prescribed water quality standards (WQS) by setting safe levels of nutrient concentrations that curtail potentially harmful cyanobacteria blooms (CyanoHABs). While some governments require WQS to consider climate change, few tools are available to model the complex interactions between climate change and benthic legacy nutrients. We present a novel process‐based integrated assessment model (IAM) that examines the extent to which synergistic relationships between GCC and legacy Phosphorus release could compromise the ability of water quality policies to attain established WQS. The IAM is calibrated for simulating the eutrophic Missisquoi Bay and watershed in Lake Champlain (2001–2050). Water quality impacts of seven P‐reduction scenarios, including the 64.3% reduction specified under the current TMDL, were examined under 17 GCC scenarios. The TMDL WQS of 0.025 mg/L total phosphorus is unlikely to be met by 2035 under the mandated 64.3% reduction for all GCC scenarios. IAM simulations show that the frequency and severity of summer CyanoHABs increased or minimally decreased under most climate and nutrient reduction scenarios. By harnessing IAMs that couple complex process‐based simulation models, the management of water quality in freshwater lakes can become more adaptive through explicit accounting of GCC effects on both the external and internal sources of nutrients.

 
more » « less
Award ID(s):
2202706 2026431
NSF-PAR ID:
10445133
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
10
Issue:
5
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.

     
    more » « less
  2. Abstract

    Land use change and agricultural intensification have increased food production but at the cost of polluting surface and groundwater. Best management practices implemented to improve water quality have met with limited success. Such lack of success is increasingly attributed to legacy nutrient stores in the subsurface that may act as sources after reduction of external inputs. However, current water‐quality models lack a framework to capture these legacy effects. Here we have modified the SWAT (Soil Water Assessment Tool) model to capture the effects of nitrogen (N) legacies on water quality under multiple land‐management scenarios. Our new SWAT‐LAG model includes (1) a modified carbon‐nitrogen cycling module to capture the dynamics of soil N accumulation, and (2) a groundwater travel time distribution module to capture a range of subsurface travel times. Using a 502‐km2Iowa watershed as a case study, we found that between 1950 and 2016, 25% of the total watershed N surplus (N Deposition + Fertilizer + Manure + N Fixation − Crop N uptake) had accumulated within the root zone, 14% had accumulated in groundwater, while 27% was lost as riverine output, and 34% was denitrified. In future scenarios, a 100% reduction in fertilizer application led to a 79% reduction in stream N load, but the SWAT‐LAG results suggest that it would take 84 years to achieve this reduction, in contrast to the 2 years predicted in the original SWAT model. The framework proposed here constitutes a first step toward modifying a widely used modeling approach to assess the effects of legacy N on the time required to achieve water‐quality goals.

     
    more » « less
  3. Abstract

    The projected near-future climate (2031–2059) of wetter springs and drier summers may negatively affect agricultural production in the US Midwest, mostly through reduced aeration of the root zone due to excess soil water and frequent loss of nutrients such as nitrate (NO3-N) and total phosphorus. Several agricultural adaptations—such as adding tile drains and increasing fertilizer rates—may be deployed to mitigate potential reductions in crop yield. However, these adaptations (generally driven by economic benefits) may have a severe impact on water quality, which is already under stress due to excess nutrient runoff from agricultural fields causing hypoxia in inland and coastal waters. Here, we evaluate the crop yield and water quality consequences of such adaptations under future climate with the Soil and Water Assessment Tool in a testbed watershed located in central Illinois. We show that additional tile drains and increased fertilizers can help achieve baseline (2003–2018) corn yields but with a nearly two-fold increase in riverine NO3-N yield affecting a major drinking water supply source. However, a shift to spring-only fertilizer application may not require additional fertilizer and reduces the increase in NO3-N loss to 1.25 times above the baseline. We also show that water quality may improve (better than baseline) with conservation measures such as cover crops and switchgrass. Our findings highlight the need to develop efficient climate change adaptation and conservation strategies for sustainable agriculture and water quality.

     
    more » « less
  4. Abstract

    Anthropogenic aerosols are hazardous to human health but have helped offset warming from greenhouse gases (GHGs), creating a potential regulatory tradeoff. As countries implement their GHG reduction targets under the Paris climate agreement, the co‐emissions of aerosols and their precursors will also change. Since these co‐emissions vary by country and by economic sector, each country will face different tradeoffs between aerosol‐driven health or temperature co‐benefits. We combine simple parameterizations of physical processes and health outcomes to examine three idealized climate policy approaches that are consistent with the Paris Agreement targets, which (i) optimize for local air quality, (ii) reduce global temperature change, or (iii) reduce emissions equally from all domestic economic sectors. We evaluate aerosol impacts on premature mortality and global mean temperature change under these three policy approaches and find that by 2030 the three policies yield differences of over 1 million annual premature deaths and global temperature differences of the same magnitude as those from GHG reductions. We also show that implementing equal reductions between all economic sectors can actually result in less beneficial health and temperature outcomes than either of the other options, especially in less industrialized regions. We therefore conclude that aerosol‐related co‐benefits and aerosol accounting guidelines should be explicitly considered in setting international climate policy.

     
    more » « less
  5. The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50–60 nmol⋅kg −1 . In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios. 
    more » « less