The use of magnetic tunnel junction (MTJ)-based devices constitutes an important basis of modern spintronics. However, the switching layer of an MTJ is widely believed to be an unmodifiable setup, instead of a user-defined option, posing a restriction to the function of spintronic devices. In this study, we realized a reliable electrical control of the switching layer in perpendicular MTJs with 0.1 nm Ir dusting. Specifically, a voltage pulse with a higher amplitude drives the magnetization switching of the MTJ's bottom electrode, while a lower voltage amplitude switches its top electrode. We discussed the origin of this controllability and excluded the possibility of back-hopping. Given the established studies on enhancing the voltage-controlled magnetic anisotropy effect by adopting Ir, we attribute this switching behavior to the significant diffusion of Ir atoms into the top electrode, which is supported by scanning transmission electron microscopy with atomic resolution. 
                        more » 
                        « less   
                    
                            
                            Electrodeposited Platinum Iridium Enables Microstimulation With Carbon Fiber Electrodes
                        
                    
    
            Ultrasmall microelectrode arrays have the potential to improve the spatial resolution of microstimulation. Carbon fiber (CF) microelectrodes with cross-sections of less than 8 μm have been demonstrated to penetrate cortical tissue and evoke minimal scarring in chronic implant tests. In this study, we investigate the stability and performance of neural stimulation electrodes comprised of electrodeposited platinum-iridium (PtIr) on carbon fibers. We conducted pulse testing and characterized charge injection in vitro and recorded voltage transients in vitro and in vivo. Standard electrochemical measurements (impedance spectroscopy and cyclic voltammetry) and visual inspection (scanning electron microscopy) were used to assess changes due to pulsing. Similar to other studies, the application of pulses caused a decrease in impedance and a reduction in voltage transients, but analysis of the impedance data suggests that these changes are due to surface modification and not permanent changes to the electrode. Comparison of scanning electron microscope images before and after pulse testing confirmed electrode stability. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10341239
- Date Published:
- Journal Name:
- Frontiers in nanotechnology
- ISSN:
- 2673-3013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Electrophysiological stimulation has been widely adopted for clinical diagnostic and therapeutic treatments for modulation of neuronal activity. Safety is a primary concern in an interventional design leveraging the effects of electrical charge injection into tissue in the proximity of target neurons. While modalities of tissue damage during stimulation have been extensively investigated for specific electrode geometries and stimulation paradigms, a comprehensive model that can predict the electrochemical safety limits in vivo doesn’t yet exist. Here we develop a model that accounts for the electrode geometry, inter-electrode separation, material, and stimulation paradigm in predicting safe current injection limits. We performed a parametric investigation of the stimulation limits in both benchtop and in vivo setups for flexible microelectrode arrays with low impedance, high geometric surface area platinum nanorods and PEDOT:PSS, and higher impedance, planar platinum contacts. We benchmark our findings against standard clinical electrocorticography and depth electrodes. Using four, three and two contact electrochemical impedance measurements and comprehensive circuit models derived from these measurements, we developed a more accurate, clinically relevant and predictive model for the electrochemical interface potential. For each electrode configuration, we experimentally determined the geometric correction factors that dictate geometry-enforced current spreading effects. We also determined the electrolysis window from cyclic-voltammetry measurements which allowed us to calculate stimulation current safety limits from voltage transient measurements. From parametric benchtop electrochemical measurements and analyses for different electrode types, we created a predictive equation for the cathodal excitation measured at the electrode interface as a function of the electrode dimensions, geometric factor, material and stimulation paradigm. We validated the accuracy of our equation in vivo and compared the experimentally determined safety limits to clinically used stimulation protocols. Our new model overcomes the design limitations of Shannon’s equation and applies to macro- and micro-electrodes at different density or separation of contacts, captures the breakdown of charge-density based approaches at long stimulation pulse widths, and invokes appropriate power exponents to current, pulse width, and material/electrode-dependent impedance.more » « less
- 
            The temperature coefficient of resistivity (θT) of carbon-based materials is a critical property that directly determines their electrical response upon thermal impulses. It could have metal- (positive) or semiconductor-like (negative) behavior, depending on the combined temperature dependence of electron density and electron scattering. Its distribution in space is very difficult to measure and is rarely studied. Here, for the first time, we report that carbon-based micro/nanoscale structures have a strong non-uniform spatial distribution of θT. This distribution is probed by measuring the transient electro-thermal response of the material under extremely localized step laser heating and scanning, which magnifies the local θT effect in the measured transient voltage evolution. For carbon microfibers (CMFs), after electrical current annealing, θT varies from negative to positive from the sample end to the center with a magnitude change of >130% over <1 mm. This θT sign change is confirmed by directly testing smaller segments from different regions of an annealed CMF. For micro-thick carbon nanotube bundles, θT is found to have a relative change of >125% within a length of ∼2 mm, uncovering strong metallic to semiconductive behavior change in space. Our θT scanning technique can be readily extended to nm-thick samples with μm scanning resolution to explore the distribution of θT and provide a deep insight into the local electron conduction.more » « less
- 
            The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these “Li-free” cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first during cell operation. In this study, we have achieved a direct visualization and comprehensive analysis of the dynamic evolution of the Li interface. The critical metrics of the interfacial resistance, Li growth, and solid electrolyte interface (SEI) distribution during the initial dissolution/deposition processes were systematically investigated by employing multidimensional analysis methods. They include three-electrode impedance tests, in situ atomic force microscopy, scanning electrochemical microscopy, and cryogenic scanning transmission electron microscopy. The high-resolution imaging and real-time observations show that a loose, diffuse, and unevenly distributed SEI is formed during the initial dissolution process. This leads to the dramatically fast growth of Li during the subsequent deposition, deviating from Fick’s law, which exacerbates the interfacial impedance. The compactness of the interfacial structure and enrichment of electrolyte species at the surface during the initial deposition play critical roles in the long-term stability of Li anodes, as revealed by operando confocal Raman spectroscopic mapping. Our observations relate to ion transfer, morphological and structural evolution, and Li (de)solvation at Li interfaces, revealing the underlying pathways influenced by the initial dissolution process, which promotes a reconsideration of anode investigations and effective protection strategies.more » « less
- 
            Abstract “Perovskite/carbon” interface is a bottle‐neck for hole‐conductor‐free, carbon‐electrode basing perovskite solar cells due to the energy mismatch and concentrated defects. In this article, in‐situ healing strategy is proposed by doping octylammonium iodide into carbon paste that used to prepare carbon‐electrode on perovskite layer. This strategy is found to strengthen interfacial contact and reduce interfacial defects on one hand, and slightly elevate the work function of the carbon‐electrode on other hand. Due to this effect, charge extraction is accelerated, while recombination is obviously reduced. Accordingly, power conversion efficiency of the hole‐conductor‐free, planar perovskite solar cells is upgraded by ≈50%, or from 11.65 (± 1.59) % to 17.97 (± 0.32) % (AM1.5G, 100 mW cm−2). The optimized device shows efficiency of 19.42% and open‐circuit voltage of 1.11 V. Meanwhile, moisture‐stability is tested by keeping the unsealed devices in closed chamber with relative humidity of 85%. The “in‐situ healing” strategy helps to obtain T80time of >450 h for the carbon‐electrode basing devices, which is four times of the reference ones. Thus, a kind of “internal encapsulation effect” has also been reached. The “in situ healing” strategy facilitates the fabrication of efficient and stable hole‐conductor‐free devices basing on carbon‐electrode.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    