skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data in: Aging power spectrum of membrane protein transport and other subordinated random walks
{"Abstract":["Datasets generated in the report "Aging power spectrum of membrane protein transport and other subordinated random walks". Included data are:<\/p>\n\nNumerical simulations <\/strong>\nRWdata1.mat: 10,000 realizations, subordinated random walk with Hurst exponent, H<\/em>=0.3 and \\(\\alpha\\)=0.4.\nRWdata3.mat: 10,000 realizations, subordinated random walk with Hurst exponent, H<\/em>=0.7 and \\(\\alpha\\)=0.4.\nRWdata8.mat: 5,000 realizations, subordinated random walk with Hurst exponent, H<\/em>=0.75 and \\(\\alpha\\)=0.8.\nRWdataCTRW.mat: 10,000 realizations, continuous time random walk (CTRW), \\(\\alpha\\)=0.7.<\/p>\n\nSpectra of simulations<\/strong>\nPSDdata1.mat: Power spectral density (PSD) of a subordinated random walk with Hurst exponent, H<\/em>=0.3 and \\(\\alpha\\)=0.4. Five different realization times are used to compute the PDS: 2^8, 2^10, 2^12, 2^14, and 2^16.\nPSDdata3.mat: PSD of a subordinated random walk with Hurst exponent, H<\/em>=0.7 and \\(\\alpha\\)=0.4. Five different realization times are used to compute the PDS: 2^8, 2^10, 2^12, 2^14, and 2^16.\nPSDdata8.mat: PSD of a subordinated random walk with Hurst exponent, H<\/em>=0.75 and \\(\\alpha\\)=0.8. Four different realization times are used to compute the PDS: 2^15, 2^16, 2^17, and 2^18.\nPSDs_CTRW.mat: PSD of a continuous-time random walk (CTRW), \\(\\alpha\\)=0.7. Five different realization times are used to compute the PDS: 2^8, 2^10, 2^12, 2^14, and 2^16.<\/p>\n\nExperimental data of Nav1.6 channels in the soma of hippocampal neurons<\/strong>\nNavMSDtimes.csv: ensemble-averaged (EA) MSD and time-averaged (TA) MSD. The TA-MSD is measured for three observation times, 64, 128, and 256 frames (3.2, 6.4, and 12.8 s).\nNavPSD.csv: Power spectral density (PSD) measured for three observation times, 64, 128, and 256 frames.<\/p>"],"Other":["We acknowledge the support of the National Science Foundation grant 2102832 (to DK) and Israel Science Foundation grant 1898/17 (to EB).","{"references": ["Fox, Z.R., Barkai, E. & Krapf, D. Aging power spectrum of membrane protein transport and other subordinated random walks. Nat Commun 12, 6162 (2021). https://doi.org/10.1038/s41467-021-26465-8"]}"]}  more » « less
Award ID(s):
2102832
PAR ID:
10341514
Author(s) / Creator(s):
; ;
Publisher / Repository:
Zenodo
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
subordinated random walks, fractional Brownian motion, power soectrum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["Data Description<\/strong>:<\/p>\n\nTo improve SOC estimation in the United States, we upscaled site-based SOC measurements to the continental scale using multivariate geographic clustering (MGC) approach coupled with machine learning models. First, we used the MGC approach to segment the United States at 30 arc second resolution based on principal component information from environmental covariates (gNATSGO soil properties, WorldClim bioclimatic variables, MODIS biological variables, and physiographic variables) to 20 SOC regions. We then trained separate random forest model ensembles for each of the SOC regions identified using environmental covariates and soil profile measurements from the International Soil Carbon Network (ISCN) and an Alaska soil profile data. We estimated United States SOC for 0-30 cm and 0-100 cm depths were 52.6 + 3.2 and 108.3 + 8.2 Pg C, respectively.<\/p>\n\nFiles in collection (32):<\/p>\n\nCollection contains 22 soil properties geospatial rasters, 4 soil SOC geospatial rasters, 2 ISCN site SOC observations csv files, and 4 R scripts<\/p>\n\ngNATSGO TIF files:<\/p>\n\n├── available_water_storage_30arc_30cm_us.tif                   [30 cm depth soil available water storage]\n├── available_water_storage_30arc_100cm_us.tif                 [100 cm depth soil available water storage]\n├── caco3_30arc_30cm_us.tif                                                 [30 cm depth soil CaCO3 content]\n├── caco3_30arc_100cm_us.tif                                               [100 cm depth soil CaCO3 content]\n├── cec_30arc_30cm_us.tif                                                     [30 cm depth soil cation exchange capacity]\n├── cec_30arc_100cm_us.tif                                                   [100 cm depth soil cation exchange capacity]\n├── clay_30arc_30cm_us.tif                                                     [30 cm depth soil clay content]\n├── clay_30arc_100cm_us.tif                                                   [100 cm depth soil clay content]\n├── depthWT_30arc_us.tif                                                        [depth to water table]\n├── kfactor_30arc_30cm_us.tif                                                 [30 cm depth soil erosion factor]\n├── kfactor_30arc_100cm_us.tif                                               [100 cm depth soil erosion factor]\n├── ph_30arc_100cm_us.tif                                                      [100 cm depth soil pH]\n├── ph_30arc_100cm_us.tif                                                      [30 cm depth soil pH]\n├── pondingFre_30arc_us.tif                                                     [ponding frequency]\n├── sand_30arc_30cm_us.tif                                                    [30 cm depth soil sand content]\n├── sand_30arc_100cm_us.tif                                                  [100 cm depth soil sand content]\n├── silt_30arc_30cm_us.tif                                                        [30 cm depth soil silt content]\n├── silt_30arc_100cm_us.tif                                                      [100 cm depth soil silt content]\n├── water_content_30arc_30cm_us.tif                                      [30 cm depth soil water content]\n└── water_content_30arc_100cm_us.tif                                   [100 cm depth soil water content]<\/p>\n\nSOC TIF files:<\/p>\n\n├──30cm SOC mean.tif                             [30 cm depth soil SOC]\n├──100cm SOC mean.tif                           [100 cm depth soil SOC]\n├──30cm SOC CV.tif                                 [30 cm depth soil SOC coefficient of variation]\n└──100cm SOC CV.tif                              [100 cm depth soil SOC coefficient of variation]<\/p>\n\nsite observations csv files:<\/p>\n\nISCN_rmNRCS_addNCSS_30cm.csv       30cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data<\/p>\n\nISCN_rmNRCS_addNCSS_100cm.csv       100cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data<\/p>\n\n\nData format<\/strong>:<\/p>\n\nGeospatial files are provided in Geotiff format in Lat/Lon WGS84 EPSG: 4326 projection at 30 arc second resolution.<\/p>\n\nGeospatial projection<\/strong>: <\/p>\n\nGEOGCS["GCS_WGS_1984",\n DATUM["D_WGS_1984",\n SPHEROID["WGS_1984",6378137,298.257223563]],\n PRIMEM["Greenwich",0],\n UNIT["Degree",0.017453292519943295]]\n(base) [jbk@theseus ltar_regionalization]$ g.proj -w\nGEOGCS["wgs84",\n DATUM["WGS_1984",\n SPHEROID["WGS_1984",6378137,298.257223563]],\n PRIMEM["Greenwich",0],\n UNIT["degree",0.0174532925199433]]\n<\/code>\n\n <\/p>"]} 
    more » « less
  2. null (Ed.)
    Abstract Homeostatic control of neuronal excitability by modulation of synaptic inhibition (I) and excitation (E) of the principal neurons is important during brain maturation. The fundamental features of in-utero brain development, including local synaptic E–I ratio and bioenergetics, can be modeled by cerebral organoids (CO) that have exhibited highly regular nested oscillatory network events. Therefore, we evaluated a 'Phase Zero' clinical study platform combining broadband Vis/near-infrared(NIR) spectroscopy and electrophysiology with studying E–I ratio based on the spectral exponent of local field potentials and bioenergetics based on the activity of mitochondrial Cytochrome-C Oxidase (CCO). We found a significant effect of the age of the healthy controls iPSC CO from 23 days to 3 months on the CCO activity (chi-square (2, N = 10) = 20, p = 4.5400e−05), and spectral exponent between 30–50 Hz (chi-square (2, N = 16) = 13.88, p = 0.001). Also, a significant effect of drugs, choline (CHO), idebenone (IDB), R-alpha-lipoic acid plus acetyl- l -carnitine (LCLA), was found on the CCO activity (chi-square (3, N = 10) = 25.44, p = 1.2492e−05), spectral exponent between 1 and 20 Hz (chi-square (3, N = 16) = 43.5, p = 1.9273e−09) and 30–50 Hz (chi-square (3, N = 16) = 23.47, p = 3.2148e−05) in 34 days old CO from schizophrenia (SCZ) patients iPSC. We present the feasibility of a multimodal approach, combining electrophysiology and broadband Vis–NIR spectroscopy, to monitor neurodevelopment in brain organoid models that can complement traditional drug design approaches to test clinically meaningful hypotheses. 
    more » « less
  3. {"Abstract":["Abstract<\/strong><\/p>\n\nThe NeonTreeCrowns dataset is a set of individual level crown estimates for 100 million trees at 37 geographic sites across the United States surveyed by the National Ecological Observation Network\u2019s Airborne Observation Platform. Each rectangular bounding box crown prediction includes height, crown area, and spatial location. <\/p>\n\nHow can I see the data?<\/strong><\/p>\n\nA web server to look through predictions is available through idtrees.org<\/p>\n\nDataset Organization<\/strong><\/p>\n\nThe shapefiles.zip contains 11,000 shapefiles, each corresponding to a 1km^2 RGB tile from NEON (ID: DP3.30010.001). For example "2019_SOAP_4_302000_4100000_image.shp" are the predictions from "2019_SOAP_4_302000_4100000_image.tif" available from the NEON data portal: https://data.neonscience.org/data-products/explore?search=camera. NEON's file convention refers to the year of data collection (2019), the four letter site code (SOAP), the sampling event (4), and the utm coordinate of the top left corner (302000_4100000). For NEON site abbreviations and utm zones see https://www.neonscience.org/field-sites/field-sites-map. <\/p>\n\nThe predictions are also available as a single csv for each file. All available tiles for that site and year are combined into one large site. These data are not projected, but contain the utm coordinates for each bounding box (left, bottom, right, top). For both file types the following fields are available:<\/p>\n\nHeight: The crown height measured in meters. Crown height is defined as the 99th quartile of all canopy height pixels from a LiDAR height model (ID: DP3.30015.001)<\/p>\n\nArea: The crown area in m2<\/sup> of the rectangular bounding box.<\/p>\n\nLabel: All data in this release are "Tree".<\/p>\n\nScore: The confidence score from the DeepForest deep learning algorithm. The score ranges from 0 (low confidence) to 1 (high confidence)<\/p>\n\nHow were predictions made?<\/strong><\/p>\n\nThe DeepForest algorithm is available as a python package: https://deepforest.readthedocs.io/. Predictions were overlaid on the LiDAR-derived canopy height model. Predictions with heights less than 3m were removed.<\/p>\n\nHow were predictions validated?<\/strong><\/p>\n\nPlease see<\/p>\n\nWeinstein, B. G., Marconi, S., Bohlman, S. A., Zare, A., & White, E. P. (2020). Cross-site learning in deep learning RGB tree crown detection. Ecological Informatics<\/em>, 56<\/em>, 101061.<\/p>\n\nWeinstein, B., Marconi, S., Aubry-Kientz, M., Vincent, G., Senyondo, H., & White, E. (2020). DeepForest: A Python package for RGB deep learning tree crown delineation. bioRxiv<\/em>.<\/p>\n\nWeinstein, Ben G., et al. "Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks." Remote Sensing<\/em> 11.11 (2019): 1309.<\/p>\n\nWere any sites removed?<\/strong><\/p>\n\nSeveral sites were removed due to poor NEON data quality. GRSM and PUUM both had lower quality RGB data that made them unsuitable for prediction. NEON surveys are updated annually and we expect future flights to correct these errors. We removed the GUIL puerto rico site due to its very steep topography and poor sunangle during data collection. The DeepForest algorithm responded poorly to predicting crowns in intensely shaded areas where there was very little sun penetration. We are happy to make these data are available upon request.<\/p>\n\n# Contact<\/p>\n\nWe welcome questions, ideas and general inquiries. The data can be used for many applications and we look forward to hearing from you. Contact ben.weinstein@weecology.org. <\/p>"],"Other":["Gordon and Betty Moore Foundation: GBMF4563"]} 
    more » « less
  4. {"Abstract":["A biodiversity dataset graph: BHL<\/p>\n\nThe intended use of this archive is to facilitate (meta-)analysis of the Biodiversity Heritage Library (BHL). The Biodiversity Heritage Library improves research methodology by collaboratively making biodiversity literature openly available to the world as part of a global biodiversity community.<\/p>\n\nThis dataset provides versioned snapshots of the BHL network as tracked by Preston [2] between 2019-05-19 and 2020-05-09 using "preston update -u https://biodiversitylibrary.org".<\/p>\n\nThe archive consists of 256 individual parts (e.g., preston-00.tar.gz, preston-01.tar.gz, ...) to allow for parallel file downloads. The archive contains three types of files: index files, provenance logs and data files. In addition, index files have been individually included in this dataset publication to facilitate remote access. Index files provide a way to links provenance files in time to establish a versioning mechanism. Provenance files describe how, when, what and where the BHL content was retrieved. For more information, please visit https://preston.guoda.bio or https://doi.org/10.5281/zenodo.1410543 .  <\/p>\n\nTo retrieve and verify the downloaded BHL biodiversity dataset graph, first concatenate all the downloaded preston-*.tar.gz files (e.g., cat preston-*.tar.gz > preston.tar.gz). Then, extract the archives into a "data" folder. Alternatively, you can use the preston[2] command-line tool to "clone" this dataset using:<\/p>\n\n$$ java -jar preston.jar clone --remote https://zenodo.org/record/3849560/files<\/p>\n\nAfter that, verify the index of the archive by reproducing the following provenance log history:<\/p>\n\n$$ java -jar preston.jar history\n<0659a54f-b713-4f86-a917-5be166a14110> <http://purl.org/pav/hasVersion> <hash://sha256/89926f33157c0ef057b6de73f6c8be0060353887b47db251bfd28222f2fd801a> .\n<hash://sha256/41b19aa9456fc709de1d09d7a59c87253bc1f86b68289024b7320cef78b3e3a4> <http://purl.org/pav/previousVersion> <hash://sha256/89926f33157c0ef057b6de73f6c8be0060353887b47db251bfd28222f2fd801a> .\n<hash://sha256/7582d5ba23e0d498ca4f55c29408c477d0d92b4fdcea139e8666f4d78c78a525> <http://purl.org/pav/previousVersion> <hash://sha256/41b19aa9456fc709de1d09d7a59c87253bc1f86b68289024b7320cef78b3e3a4> .\n<hash://sha256/a70774061ccded1a45389b9e6063eb3abab3d42813aa812391f98594e7e26687> <http://purl.org/pav/previousVersion> <hash://sha256/7582d5ba23e0d498ca4f55c29408c477d0d92b4fdcea139e8666f4d78c78a525> .\n<hash://sha256/007e065ba4b99867751d688754aa3d33fa96e6e03133a2097e8a368d613cd93a> <http://purl.org/pav/previousVersion> <hash://sha256/a70774061ccded1a45389b9e6063eb3abab3d42813aa812391f98594e7e26687> .\n<hash://sha256/4fb4b4d8f1ae2961311fb0080e817adb2faa746e7eae15249a3772fbe2d662a1> <http://purl.org/pav/previousVersion> <hash://sha256/007e065ba4b99867751d688754aa3d33fa96e6e03133a2097e8a368d613cd93a> .\n<hash://sha256/67cc329e74fd669945f503917fbb942784915ab7810ddc41105a82ebe6af5482> <http://purl.org/pav/previousVersion> <hash://sha256/4fb4b4d8f1ae2961311fb0080e817adb2faa746e7eae15249a3772fbe2d662a1> .\n<hash://sha256/e46cd4b0d7fdb51ea789fa3c5f7b73591aca62d2d8f913346d71aa6cf0745c9f> <http://purl.org/pav/previousVersion> <hash://sha256/67cc329e74fd669945f503917fbb942784915ab7810ddc41105a82ebe6af5482> .\n<hash://sha256/9215d543418a80510e78d35a0cfd7939cc59f0143d81893ac455034b5e96150a> <http://purl.org/pav/previousVersion> <hash://sha256/e46cd4b0d7fdb51ea789fa3c5f7b73591aca62d2d8f913346d71aa6cf0745c9f> .\n<hash://sha256/1448656cc9f339b4911243d7c12f3ba5366b54fff3513640306682c50f13223d> <http://purl.org/pav/previousVersion> <hash://sha256/9215d543418a80510e78d35a0cfd7939cc59f0143d81893ac455034b5e96150a> .\n<hash://sha256/7ee6b16b7a5e9b364776427d740332d8552adf5041d48018eeb3c0e13ccebf27> <http://purl.org/pav/previousVersion> <hash://sha256/1448656cc9f339b4911243d7c12f3ba5366b54fff3513640306682c50f13223d> .\n<hash://sha256/34ccd7cf7f4a1ea35ac6ae26a458bb603b2f6ee8ad36e1a58aa0261105d630b1> <http://purl.org/pav/previousVersion> <hash://sha256/7ee6b16b7a5e9b364776427d740332d8552adf5041d48018eeb3c0e13ccebf27> .<\/p>\n\nTo check the integrity of the extracted archive, confirm that each line produce by the command "preston verify" produces lines as shown below, with each line including "CONTENT_PRESENT_VALID_HASH". Depending on hardware capacity, this may take a while.<\/p>\n\n$ java -jar preston.jar verify\nhash://sha256/e0c131ebf6ad2dce71ab9a10aa116dcedb219ae4539f9e5bf0e57b84f51f22ca    file:/home/preston/preston-bhl/data/e0/c1/e0c131ebf6ad2dce71ab9a10aa116dcedb219ae4539f9e5bf0e57b84f51f22ca    OK    CONTENT_PRESENT_VALID_HASH    49458087    hash://sha256/e0c131ebf6ad2dce71ab9a10aa116dcedb219ae4539f9e5bf0e57b84f51f22ca\nhash://sha256/1a57e55a780b86cff38697cf1b857751ab7b389973d35113564fe5a9a58d6a99    file:/home/preston/preston-bhl/data/1a/57/1a57e55a780b86cff38697cf1b857751ab7b389973d35113564fe5a9a58d6a99    OK    CONTENT_PRESENT_VALID_HASH    25745    hash://sha256/1a57e55a780b86cff38697cf1b857751ab7b389973d35113564fe5a9a58d6a99\nhash://sha256/85efeb84c1b9f5f45c7a106dd1b5de43a31b3248a211675441ff584a7154b61c    file:/home/preston/preston-bhl/data/85/ef/85efeb84c1b9f5f45c7a106dd1b5de43a31b3248a211675441ff584a7154b61c    OK    CONTENT_PRESENT_VALID_HASH    519892    hash://sha256/85efeb84c1b9f5f45c7a106dd1b5de43a31b3248a211675441ff584a7154b61c\nhash://sha256/251e5032afce4f1e44bfdc5a8f0316ca1b317e8af41bdbf88163ab5bd2b52743    file:/home/preston/preston-bhl/data/25/1e/251e5032afce4f1e44bfdc5a8f0316ca1b317e8af41bdbf88163ab5bd2b52743    OK    CONTENT_PRESENT_VALID_HASH    787414    hash://sha256/251e5032afce4f1e44bfdc5a8f0316ca1b317e8af41bdbf88163ab5bd2b52743<\/p>\n\nNote that a copy of the java program "preston", preston.jar, is included in this publication. The program runs on java 8+ virtual machine using "java -jar preston.jar", or in short "preston".<\/p>\n\nFiles in this data publication:<\/p>\n\n--- start of file descriptions ---<\/p>\n\n-- description of archive and its contents (this file) --\nREADME<\/p>\n\n-- executable java jar containing preston[2] v0.1.15. --\npreston.jar<\/p>\n\n-- preston archives containing BHL data files, associated provenance logs and a provenance index --\npreston-[00-ff].tar.gz<\/p>\n\n-- individual provenance index files --\n2a5de79372318317a382ea9a2cef069780b852b01210ef59e06b640a3539cb5a\n2b1104cb7749e818c9afca78391b2d0099bbb0a32f2b348860a335cd2f8f6800\n4081bc59dff58d63f6a86c623cb770f01e9a355a42495b205bcb538cd526190f\n47a2816f8b5600b24487093adcddfea12434cc4f270f3ab09d9215fbdd546cd2\n6f99a1388823fca745c9e22ac21e2da909a219aa1ace55170fa9248c0276903c\n7ae46d7cd9b5a0f5889ba38bac53c82e591b0bdf8b605f5e48c0dce8fb7b717f\n82903464889fea7c53f53daedf4e41fa31092f82619edeb3415eb2b473f74af3\n9e8c86243df39dd4fe82a3f814710eccf73aa9291d050415408e346fa2b09e70\na8308fbf4530e287927c471d881ce0fc852f16543d46e1ee26f1caba48815f3a\nbcec6df2ea7f74e9a6e2830d0072e6b2fbe65323d9ddb022dd6e1349c23996e2\ncfe47c25ec0210ac73c06b407beb20d9c58355cb15bae427fdc7541870ca2e4e\nf73fc9e70bce8f21f0c96b8ef0903749d8f223f71343ab5a8910968f99c9b8b6<\/p>\n\n--- end of file descriptions ---<\/p>\n\n\nReferences<\/p>\n\n[1] Biodiversity Heritage Library (BHL, https://biodiversitylibrary.org) accessed from 2019-05-19 to 2020-05-09 with provenance hash://sha256/34ccd7cf7f4a1ea35ac6ae26a458bb603b2f6ee8ad36e1a58aa0261105d630b1.\n[2] https://preston.guoda.bio, https://doi.org/10.5281/zenodo.1410543 .<\/p>\n\n\nThis work is funded in part by grant NSF OAC 1839201 from the National Science Foundation.<\/p>"]} 
    more » « less
  5. Two structurally different metal–organic frameworks based on Sr 2+ ions and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene linkers have been synthesized solvothermally in different solvent systems and studied with single-crystal X-ray diffraction technique. These are poly[[μ 12 -4,4′,4′′,4′′′-(benzene-1,2,4,5-tetrayl)tetrabenzoato](dimethylformamide)distrontium(II)], [Sr 2 (C 34 H 18 O 8 )(C 3 H 7 NO) 2 ] n , and poly[tetraaqua{μ 2 -4,4′-[4,5-bis(4-carboxyphenyl)benzene-1,2-diyl]dibenzoato}tristrontium(II)], [Sr 3 (C 34 H 20 O 8 ) 2 (H 2 O) 4 ]. The differences are noted between the crystal structures and coordination modes of these two MOFs, which are responsible for their semiconductor properties, where structural control over the bandgap is desirable. Hydrogen bonding is present in only one of the compounds, suggesting it has a slightly higher structural stability. 
    more » « less