skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling risk dynamics of contaminants of emerging concern in a temperate-region wastewater effluent-dominated stream
Wastewater effluent-dominated streams are becoming increasingly common worldwide, including in temperate regions, with potential impacts on ecological systems and drinking water sources. We recently quantified the occurrence/spatiotemporal dynamics of pharmaceutical mixtures in a representative temperate-region wastewater effluent-dominated stream (Muddy Creek, Iowa) under baseflow conditions and characterized relevant fate processes. Herein, we quantified the ecological risk quotients (RQs) of 19 effluent-derived contaminants of emerging concern (CECs; including: 14 pharmaceuticals, 2 industrial chemicals, and 3 neonicotinoid insecticides) and 1 run-off-derived compound (atrazine) in the stream under baseflow conditions, and estimated the probabilistic risks of effluent-derived CECs under all-flow conditions ( i.e. , including runoff events) using stochastic risk modeling. We determined that 11 out of 20 CECs pose medium-to-high risks to local ecological systems ( i.e. , algae, invertebrates, fish) based on literature-derived acute effects under measured baseflow conditions. Stochastic risk modeling indicated decreased, but still problematic, risk of effluent-derived CECs ( i.e. , RQ ≥ 0.1) under all-flow conditions when runoff events were included. Dilution of effluent-derived chemicals from storm flows thus only minimally decreased risk to aquatic biota in the effluent-dominated stream. We also modeled in-stream transport. Thirteen out of 14 pharmaceuticals persisted along the stream reach (median attenuation rate constant k < 0.1 h −1 ) and entered the Iowa River at elevated concentrations. Predicted and measured concentrations in the drinking water treatment plant were below the human health benchmarks. This study demonstrates the application of probabilistic risk assessments for effluent-derived CECs in a representative effluent-dominated stream under variable flow conditions (when measurements are less practical) and provides an enhanced prediction tool transferable to other effluent-dominated systems.  more » « less
Award ID(s):
1803197
PAR ID:
10341577
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
8
Issue:
7
ISSN:
2053-1400
Page Range / eLocation ID:
1408 to 1422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Neonicotinoids in aquatic systems have been predominantly associated with agriculture, but some are increasingly being linked to municipal wastewater. Thus, the aim of this work was to understand the municipal wastewater contribution to neonicotinoids in a representative, characterized effluent-dominated temperate-region stream. Our approach was to quantify the spatiotemporal concentrations of imidacloprid, clothianidin, thiamethoxam, and transformation product imidacloprid urea: 0.1 km upstream, the municipal wastewater effluent, and 0.1 and 5.1 km downstream from the wastewater outfall (collected twice-monthly for one year under baseflow conditions). Quantified results demonstrated that wastewater effluent was a point-source of imidacloprid (consistently) and clothianidin (episodically), where chronic invertebrate exposure benchmarks were exceeded for imidacloprid (36/52 samples; 3/52 > acute exposure benchmark) and clothianidin (8/52 samples). Neonicotinoids persisted downstream where mass loads were not significantly different than those in the effluent. The combined analysis of neonicotinoid effluent concentrations, instream seasonality, and registered uses in Iowa all indicate imidacloprid, and seasonally clothianidin, were driven by wastewater effluent, whereas thiamethoxam and imidacloprid urea were primarily from upstream non-point sources (or potential in-stream transformation for imidacloprid urea). This is the first study to quantify neonicotinoid persistence in an effluent-dominated stream throughout the year—implicating wastewater effluent as a point-source for imidacloprid (year-round) and clothianidin (seasonal). These findings suggest possible overlooked neonicotinoid indoor human exposure routes with subsequent implications for instream ecotoxicological exposure. 
    more » « less
  2. Abstract A changing climate and often unregulated water extractions have exposed over 2 billion people to water stress worldwide. While water managers have explored a portfolio of options to reduce this stress, supply augmentation through reuse of treated municipal wastewater is becoming increasingly attractive. Wastewater treatment plants protect water quality and prevent sewage from contaminating waterways. Increasingly, this resource is utilized for numerous human (e.g., irrigation, drinking water, groundwater recharge) and conservation (e.g., stream and river recharge) needs in water stressed regions. To understand the role treated municipal wastewater plays in impacting conservation objectives we identified the intersection of wastewater treatment plant locations and occurrences of threatened and endangered (T&E) species in California and compared the permitted contribution of effluent to baseflow quantities of the receiving waterbody to assess the degree to which changes in effluent could affect instream waterbodies. We found a positive correlation between the presence of treatment plants and T&E species in California watersheds—a quarter of species have 100% of their range in watersheds with at least one treatment plant. This correlation is greatest for species associated with terraces and riparian habitat, followed by aquatic habitat and aquatic emergent vegetation. One‐third of watersheds in our analysis can receive most of their cumulative watershed baseflow from effluent and are characterized by dense urbanization or agriculture. Our analysis demonstrates that the fates of T&E species and effluent are interconnected in ways important for water policy, suggesting that species conservation goals should be considered when making decisions about effluent reuse. 
    more » « less
  3. Disinfection is an essential process for both potable water and wastewater treatment plants. However, disinfection byproducts (DBPs) like trihalomethanes (THMs), haloacetonitriles (HANs), and nitrosamines (NOAs) are formed when organic matter precursors react with disinfectants such as chlorine, chloramine, and ozone. Formation of DBPs is strongly associated with the type of water source, type of disinfectant, and organic matter concentration, which can have seasonal variation. In this study, water samples were collected from 20 different intra-watershed locations, which included urban runoff (with and without the influence of unsheltered homeless populations), wastewater effluent discharges, and a large, terminal reservoir that serves as the local drinking water source. Samples were collected on dry and rainy days, which represent seasonal samples. DBP formation potential (FP) tests were conducted at consistent pH, contact time, and temperature. THMs, NOAs, and HANs were analyzed by gas chromatography-mass spectrometry (GC-MS). The FP tests performed on these water samples revealed that chlorine formed the highest THM concentrations, while THM concentrations were low for the ozone FP test as expected. Chloramine produced the greatest HAN concentrations, with dichloroacetonitrile representing the highest concentration. With respect to sample type, more DBPs were formed at the non-wastewater-impacted runoff sites as compared to the wastewater effluent discharge sites. With respect to TOC levels, rain event samples for all locations had higher TOC concentrations compared to dry sampling days. Similarly, rain event samples showed increased DBP formation; a significant amount of precursors for THMs was found in runoff waters that were influenced by wastewater effluent discharges and unsheltered homeless locations (concentration of total THMs for chlorine FP test was >200 μg/L). Therefore, urban runoff waters should be considered as potential sources of DBP precursors to drinking water source waters, and runoff water is prone to seasonal variation. 
    more » « less
  4. Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed “chemical cocktails”, in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e.,permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g.,Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers. 
    more » « less
  5. Nitrate is a frequent water pollutant that results from human activities such as fertilizer over-application and agricultural runoff and improper disposal of human and animals waste. Excess levels of nitrate in watersheds can trigger harmful algal blooms (HABs) and biodiversity loss with consequences that affect the economy and pose a threat to human health. Municipal drinking water and wastewater treatment plants are therefore required to control nitrogen levels to ensure the safety of drinking water and the proper discharge of effluent. Nitrate exhibits distinct absorption bands in the infrared spectral range. While infrared radiation is strongly attenuated in water, implementation of fiber optic evanescent wave spectroscopy (FEWS) enables monitoring of water contaminants in real-time with high sensitivity. This work outlines the development of a non-dispersive infrared (NDIR) detector for the real-time monitoring of nitrate, nitrite and ammonia concentrations targeting implementation at municipal wastewater treatment plants (WWTPs) and onsite wastewater treatment systems (OWTS). 
    more » « less