- Award ID(s):
- 1945589
- PAR ID:
- 10341783
- Date Published:
- Journal Name:
- Nanoscale Advances
- Volume:
- 4
- Issue:
- 7
- ISSN:
- 2516-0230
- Page Range / eLocation ID:
- 1741 to 1757
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Interfacial water participates in a wide range of phenomena involving graphite, graphite-like and 2D material interfaces. Recently, several high-spatial resolution experiments have questioned the existence of hydration layers on graphite, graphite-like and 2D material surfaces. Here, 3D AFM was applied to follow in real-time and with atomic-scale depth resolution the evolution of graphite–water interfaces. Pristine graphite surfaces upon immersion in water showed the presence of several hydration layers separated by a distance of 0.3 nm. Those layers were short-lived. After several minutes, the interlayer distance increased to 0.45 nm. At longer immersion times (∼50 min) we observed the formation of a third layer. An interlayer distance of 0.45 nm characterizes the layering of predominantly alkane-like hydrocarbons. Molecular dynamics calculations supported the experimental observations. The replacement of water molecules by hydrocarbons on graphite is spontaneous. It happens whenever the graphite–water volume is exposed to air.more » « less
-
This data set for the manuscript entitled "Design of Peptides that Fold and Self-Assemble on Graphite" includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled to 10 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included.
Version: 2.0
Changes versus version 1.0 are the addition of the free energy of folding, adsorption, and pairing calculations (Sim_Figure-7) and shifting of the figure numbers to accommodate this addition.
Conventions Used in These Files
===============================Structure Files
----------------
- graph_*.psf or sol_*.psf (original NAMD (XPLOR?) format psf file including atom details (type, charge, mass), as well as definitions of bonds, angles, dihedrals, and impropers for each dipeptide.)- graph_*.pdb or sol_*.pdb (initial coordinates before equilibration)
- repart_*.psf (same as the above psf files, but the masses of non-water hydrogen atoms have been repartitioned by VMD script repartitionMass.tcl)
- freeTop_*.pdb (same as the above pdb files, but the carbons of the lower graphene layer have been placed at a single z value and marked for restraints in NAMD)
- amber_*.prmtop (combined topology and parameter files for Amber force field simulations)
- repart_amber_*.prmtop (same as the above prmtop files, but the masses of non-water hydrogen atoms have been repartitioned by ParmEd)Force Field Parameters
----------------------
CHARMM format parameter files:
- par_all36m_prot.prm (CHARMM36m FF for proteins)
- par_all36_cgenff_no_nbfix.prm (CGenFF v4.4 for graphene) The NBFIX parameters are commented out since they are only needed for aromatic halogens and we use only the CG2R61 type for graphene.
- toppar_water_ions_prot_cgenff.str (CHARMM water and ions with NBFIX parameters needed for protein and CGenFF included and others commented out)Template NAMD Configuration Files
---------------------------------
These contain the most commonly used simulation parameters. They are called by the other NAMD configuration files (which are in the namd/ subdirectory):
- template_min.namd (minimization)
- template_eq.namd (NPT equilibration with lower graphene fixed)
- template_abf.namd (for adaptive biasing force)Minimization
-------------
- namd/min_*.0.namdEquilibration
-------------
- namd/eq_*.0.namdAdaptive biasing force calculations
-----------------------------------
- namd/eabfZRest7_graph_chp1404.0.namd
- namd/eabfZRest7_graph_chp1404.1.namd (continuation of eabfZRest7_graph_chp1404.0.namd)Log Files
---------
For each NAMD configuration file given in the last two sections, there is a log file with the same prefix, which gives the text output of NAMD. For instance, the output of namd/eabfZRest7_graph_chp1404.0.namd is eabfZRest7_graph_chp1404.0.log.Simulation Output
-----------------
The simulation output files (which match the names of the NAMD configuration files) are in the output/ directory. Files with the extensions .coor, .vel, and .xsc are coordinates in NAMD binary format, velocities in NAMD binary format, and extended system information (including cell size) in text format. Files with the extension .dcd give the trajectory of the atomic coorinates over time (and also include system cell information). Due to storage limitations, large DCD files have been omitted or replaced with new DCD files having the prefix stride50_ including only every 50 frames. The time between frames in these files is 50 * 50000 steps/frame * 4 fs/step = 10 ns. The system cell trajectory is also included for the NPT runs are output/eq_*.xst.Scripts
-------
Files with the .sh extension can be found throughout. These usually provide the highest level control for submission of simulations and analysis. Look to these as a guide to what is happening. If there are scripts with step1_*.sh and step2_*.sh, they are intended to be run in order, with step1_*.sh first.
CONTENTS
========The directory contents are as follows. The directories Sim_Figure-1 and Sim_Figure-8 include README.txt files that describe the files and naming conventions used throughout this data set.
Sim_Figure-1: Simulations of N-acetylated C-amidated amino acids (Ac-X-NHMe) at the graphite–water interface.
Sim_Figure-2: Simulations of different peptide designs (including acyclic, disulfide cyclized, and N-to-C cyclized) at the graphite–water interface.
Sim_Figure-3: MM-GBSA calculations of different peptide sequences for a folded conformation and 5 misfolded/unfolded conformations.
Sim_Figure-4: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.
Sim_Figure-5: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 295 K.
Sim_Figure-5_replica: Temperature replica exchange molecular dynamics simulations for the peptide cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) with 20 replicas for temperatures from 295 to 454 K.
Sim_Figure-6: Simulation of the peptide molecule cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) in free solution (no graphite).
Sim_Figure-7: Free energy calculations for folding, adsorption, and pairing for the peptide CHP1404 (sequence: cyc(GTGSGTG-GPGG-GCGTGTG-SGPG)). For folding, we calculate the PMF as function of RMSD by replica-exchange umbrella sampling (in the subdirectory Folding_CHP1404_Graphene/). We make the same calculation in solution, which required 3 seperate replica-exchange umbrella sampling calculations (in the subdirectory Folding_CHP1404_Solution/). Both PMF of RMSD calculations for the scrambled peptide are in Folding_scram1404/. For adsorption, calculation of the PMF for the orientational restraints and the calculation of the PMF along z (the distance between the graphene sheet and the center of mass of the peptide) are in Adsorption_CHP1404/ and Adsorption_scram1404/. The actual calculation of the free energy is done by a shell script ("doRestraintEnergyError.sh") in the 1_free_energy/ subsubdirectory. Processing of the PMFs must be done first in the 0_pmf/ subsubdirectory. Finally, files for free energy calculations of pair formation for CHP1404 are found in the Pair/ subdirectory.
Sim_Figure-8: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) where the peptides are far above the graphene–water interface in the initial configuration.
Sim_Figure-9: Two replicates of a simulation of nine peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.
Sim_Figure-9_scrambled: Two replicates of a simulation of nine peptide molecules with the control sequence cyc(GGTPTTGGGGGGSGGPSGTGGC) at the graphite–water interface at 370 K.
Sim_Figure-10: Adaptive biasing for calculation of the free energy of the folded peptide as a function of the angle between its long axis and the zigzag directions of the underlying graphene sheet.
-
All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N 2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N 2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N 16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N 16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N 2 from the N 5 group as revealed by the MD simulations.more » « less
-
A classical model in the framework of the INTERFACE force field has been developed for treating the LiCoO$_2$ (LCO) (001)/water interface. In comparison to {\em ab initio} molecular dynamics (MD) simulations based on density functional theory, MD simulations using the classical model lead to generally reliable descriptions of interfacial properties, such as the density distribution of water molecules. Water molecules in close contact with the LCO surface form a strongly adsorbed layer, which leads to a free energy barrier for the absorption of polar or charged molecules to the LCO surface. Moreover, due to the strong hydrogen bonding interactions with the LCO surface, the first water layer forms an interface that exhibits hydrophobic characters, leading to favorable adsorption of non-polar molecules to the interface. Therefore, despite its highly polar nature, the LCO (001) surface binds not only polar/charged but also non-polar solutes. As an application, the model is used to analyze the adsorption of reduced nicotinamide adenine dinucleotide (NADH) and its molecular components to the LCO (001) surface in water. The results suggests that recently observed redox activity of NADH at the LCO/water interface was due to the co-operativity between the ribose component, which drives binding to the LCO surface, and the nicotinamide moiety, which undergoes oxidation.more » « less
-
The friction and wear behavior of materials are not intrinsic properties, but extrinsic properties; in other words, they can drastically vary depending on test and environmental conditions. In ambient air, humidity is one such extrinsic parameter. This paper reviews the effects of humidity on macro- and nano-scale friction and wear of various types of materials. The materials included in this review are graphite and graphene, diamond-like carbon (DLC) films, ultrananocrystalline diamond (UNCD), transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), boric acid, silicon, silicon oxide, silicates, advanced ceramics, and metals. Details of underlying mechanisms governing friction and wear behaviors vary depending on materials and humidity; nonetheless, a comparison of various material cases revealed an overarching trend. Tribochemical reactions between the tribo-materials and the adsorbed water molecules play significant roles; such reactions can occur at defect sites in the case of two-dimensionally layered materials and carbon-based materials, or even on low energy surfaces in the case of metals and oxide materials. It is extremely important to consider the effects of adsorbed water layer thickness and structure for a full understanding of tribological properties of materials in ambient air.more » « less