skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Stochastic Multi-Rate Control Framework For Modeling Distributed Optimization Algorithms
In modern machine learning systems, distributed algorithms are deployed across applications to ensure data privacy and optimal utilization of computational resources. This work offers a fresh perspective to model, analyze, and design distributed optimization algorithms through the lens of stochastic multi-rate feedback control. We show that a substantial class of distributed algorithms—including popular Gradient Tracking for decentralized learning, and FedPD and Scaffold for federated learning—can be modeled as a certain discrete-time stochastic feedback-control system, possibly with multiple sampling rates. This key observation allows us to develop a generic framework to analyze the convergence of the entire algorithm class. It also enables one to easily add desirable features such as differential privacy guarantees, or to deal with practical settings such as partial agent participation, communication compression, and imperfect communication in algorithm design and analysis.  more » « less
Award ID(s):
1910385
PAR ID:
10341887
Author(s) / Creator(s):
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While embracing various machine learning techniques to make effective decisions in the big data era, preserving the privacy of sensitive data poses significant challenges. In this paper, we develop a privacy-preserving distributed machine learning algorithm to address this issue. Given the assumption that each data provider owns a dataset with different sample size, our goal is to learn a common classifier over the union of all the local datasets in a distributed way without leaking any sensitive information of the data samples. Such an algorithm needs to jointly consider efficient distributed learning and effective privacy preservation. In the proposed algorithm, we extend stochastic alternating direction method of multipliers (ADMM) in a distributed setting to do distributed learning. For preserving privacy during the iterative process, we combine differential privacy and stochastic ADMM together. In particular, we propose a novel stochastic ADMM based privacy-preserving distributed machine learning (PS-ADMM) algorithm by perturbing the updating gradients, that provide differential privacy guarantee and have a low computational cost. We theoretically demonstrate the convergence rate and utility bound of our proposed PS-ADMM under strongly convex objective. Through our experiments performed on real-world datasets, we show that PS-ADMM outperforms other differentially private ADMM algorithms under the same differential privacy guarantee. 
    more » « less
  2. In this paper, we study kernelized bandits with distributed biased feedback. This problem is motivated by several real-world applications (such as dynamic pricing, cellular network configuration, and policy making), where users from a large population contribute to the reward of the action chosen by a central entity, but it is difficult to collect feedback from all users. Instead, only biased feedback (due to user heterogeneity) from a subset of users may be available. In addition to such partial biased feedback, we are also faced with two practical challenges due to communication cost and computation complexity. To tackle these challenges, we carefully design a new distributed phase-then-batch-based elimination (DPBE) algorithm, which samples users in phases for collecting feedback to reduce the bias and employs maximum variance reduction to select actions in batches within each phase. By properly choosing the phase length, the batch size, and the confidence width used for eliminating suboptimal actions, we show that DPBE achieves a sublinear regret of ~O(T1-α/2 +√γT T), where α ∈ (0,1) is the user-sampling parameter one can tune. Moreover, DPBE can significantly reduce both communication cost and computation complexity in distributed kernelized bandits, compared to some variants of the state-of-the-art algorithms (originally developed for standard kernelized bandits). Furthermore, by incorporating various differential privacy models (including the central, local, and shuffle models), we generalize DPBE to provide privacy guarantees for users participating in the distributed learning process. Finally, we conduct extensive simulations to validate our theoretical results and evaluate the empirical performance. 
    more » « less
  3. We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize the communication cost. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe that there is a trade-off between the pairs among communication, accuracy, and data privacy. As local devices may become inactive in federated networks, we also show convergence results based on different averaging schemes where only partial device updates are available. In such a case, we discover an additional bias that does not decay to zero. 
    more » « less
  4. We consider a distributed empirical risk minimization (ERM) optimization problem with communication efficiency and privacy requirements, motivated by the federated learn- ing (FL) framework. We propose a distributed communication-efficient and local differentially private stochastic gradient descent (CLDP-SGD) algorithm and analyze its communication, privacy, and convergence trade-offs. Since each iteration of the CLDP- SGD aggregates the client-side local gradients, we develop (optimal) communication-efficient schemes for mean estimation for several lp spaces under local differential privacy (LDP). To overcome performance limitation of LDP, CLDP-SGD takes advantage of the inherent privacy amplification provided by client sub- sampling and data subsampling at each se- lected client (through SGD) as well as the recently developed shuffled model of privacy. For convex loss functions, we prove that the proposed CLDP-SGD algorithm matches the known lower bounds on the centralized private ERM while using a finite number of bits per iteration for each client, i.e., effectively get- ting communication efficiency for “free”. We also provide preliminary experimental results supporting the theory. 
    more » « less
  5. In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality . In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-offs over a fixed communication topology. First, we propose the incremental consensus -based distributed stochastic gradient descent (i-CDSGD) algorithm, which involves multiple consensus steps (where each agent communicates information with its neighbors) within each SGD iteration. Second, we propose the generalized consensus -based distributed SGD (g-CDSGD) algorithm that enables us to navigate the full spectrum from complete consensus (all agents agree) to complete disagreement (each agent converges to individual model parameters). We analytically establish convergence of the proposed algorithms for strongly convex and nonconvex objective functions; we also analyze the momentum variants of the algorithms for the strongly convex case. We support our algorithms via numerical experiments, and demonstrate significant improvements over existing methods for collaborative deep learning. 
    more » « less