skip to main content


Title: Interpretable Prediction of Lung Squamous Cell Carcinoma Recurrence With Self-supervised Learning
Lung squamous cell carcinoma (LSCC) has a high recurrence and metastasis rate. Factors influencing recurrence and metastasis are currently unknown and there are no distinct histopathological or morphological features indicating the risks of recurrence and metastasis in LSCC. Our study focuses on the recurrence prediction of LSCC based on H&E-stained histopathological whole-slide images (WSI). Due to the small size of LSCC cohorts in terms of patients with available recurrence information, standard end-to-end learning with various convolutional neural networks for this task tends to overfit. Also, the predictions made by these models are hard to interpret. Histopathology WSIs are typically very large and are therefore processed as a set of smaller tiles. In this work, we propose a novel conditional self-supervised learning (SSL) method to learn representations of WSI at the tile level first, and leverage clustering algorithms to identify the tiles with similar histopathological representations. The resulting representations and clusters from self-supervision are used as features of a survival model for recurrence prediction at the patient level. Using two publicly available datasets from TCGA and CPTAC, we show that our LSCC recurrence prediction survival model outperforms both LSCC pathological stage-based approach and machine learning baselines such as multiple instance learning. The proposed method also enables us to explain the recurrence histopathological risk factors via the derived clusters. This can help pathologists derive new hypotheses regarding morphological features associated with LSCC recurrence.  more » « less
Award ID(s):
1922658
NSF-PAR ID:
10341903
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Medical Imaging with Deep Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatic histopathological Whole Slide Image (WSI) analysis for cancer classification has been highlighted along with the advancements in microscopic imaging techniques, since manual examination and diagnosis with WSIs are time- and cost-consuming. Recently, deep convolutional neural networks have succeeded in histopathological image analysis. However, despite the success of the development, there are still opportunities for further enhancements. In this paper, we propose a novel cancer texture-based deep neural network (CAT-Net) that learns scalable morphological features from histopathological WSIs. The innovation of CAT-Net is twofold: (1) capturing invariant spatial patterns by dilated convolutional layers and (2) improving predictive performance while reducing model complexity. Moreover, CAT-Net can provide discriminative morphological (texture) patterns formed on cancerous regions of histopathological images comparing to normal regions. We elucidated how our proposed method, CAT-Net, captures morphological patterns of interest in hierarchical levels in the model. The proposed method out-performed the current state-of-the-art benchmark methods on accuracy, precision, recall, and F1 score. 
    more » « less
  2. Abstract

    Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutations related to targeted therapies are identified by genomic analysis like high-throughput molecular profiling. In this study, we develop a deep-learning model to predict the genetic mutations and biological pathway activities directly from WSIs. Our study offers unique insights into WSI visual interactions between mutation and its related pathway, enabling a head-to-head comparison to reinforce our major findings. Using the histopathology images from the Genomic Data Commons Database, our model can predict the point mutations of six important genes (AUC 0.68–0.85) and copy number alteration of another six genes (AUC 0.69–0.79). Additionally, the trained models can predict the activities of three out of ten canonical pathways (AUC 0.65–0.79). Next, we visualized the weight maps of tumor tiles in WSI to understand the decision-making process of deep-learning models via a self-attention mechanism. We further validated our models on liver and lung cancers that are related to metastatic breast cancer. Our results provide insights into the association between pathological image features, molecular outcomes, and targeted therapies for breast cancer patients.

     
    more » « less
  3. Abstract Non-small-cell lung cancer (NSCLC) represents approximately 80–85% of lung cancer diagnoses and is the leading cause of cancer-related death worldwide. Recent studies indicate that image-based radiomics features from positron emission tomography/computed tomography (PET/CT) images have predictive power for NSCLC outcomes. To this end, easily calculated functional features such as the maximum and the mean of standard uptake value (SUV) and total lesion glycolysis (TLG) are most commonly used for NSCLC prognostication, but their prognostic value remains controversial. Meanwhile, convolutional neural networks (CNN) are rapidly emerging as a new method for cancer image analysis, with significantly enhanced predictive power compared to hand-crafted radiomics features. Here we show that CNNs trained to perform the tumor segmentation task, with no other information than physician contours, identify a rich set of survival-related image features with remarkable prognostic value. In a retrospective study on pre-treatment PET-CT images of 96 NSCLC patients before stereotactic-body radiotherapy (SBRT), we found that the CNN segmentation algorithm (U-Net) trained for tumor segmentation in PET and CT images, contained features having strong correlation with 2- and 5-year overall and disease-specific survivals. The U-Net algorithm has not seen any other clinical information (e.g. survival, age, smoking history, etc.) than the images and the corresponding tumor contours provided by physicians. In addition, we observed the same trend by validating the U-Net features against an extramural data set provided by Stanford Cancer Institute. Furthermore, through visualization of the U-Net, we also found convincing evidence that the regions of metastasis and recurrence appear to match with the regions where the U-Net features identified patterns that predicted higher likelihoods of death. We anticipate our findings will be a starting point for more sophisticated non-intrusive patient specific cancer prognosis determination. For example, the deep learned PET/CT features can not only predict survival but also visualize high-risk regions within or adjacent to the primary tumor and hence potentially impact therapeutic outcomes by optimal selection of therapeutic strategy or first-line therapy adjustment. 
    more » « less
  4. Histopathological image analysis is critical in cancer diagnosis and treatment. Due to the huge size of histopathological images, most existing works analyze the whole slide pathological image (WSI) as a bag and its patches are considered as instances. However, these approaches are limited to analyzing the patches in a fixed shape, while the malignant lesions can form varied shapes. To address this challenge, we propose the Multi-Instance Multi-Shape Support Vector Machine (MIMSSVM) to analyze the multiple images (instances) jointly where each instance consists of multiple patches in varied shapes. In our approach, we can identify the varied morphologic abnormalities of nuclei shapes from the multiple images. In addition to the multi-instance multi-shape learning capability, we provide an efficient algorithm to optimize the proposed model which scales well to a large number of features. Our experimental results show the proposed MIMSSVM method outperforms the existing SVM and recent deep learning models in histopathological classification. The proposed model also identifies the tissue segments in an image exhibiting an indication of an abnormality which provides utility in the early detection of malignant tumors. 
    more » « less
  5. Urban dispersal events occur when an unexpectedly large number of people leave an area in a relatively short period of time. It is beneficial for the city authorities, such as law enforcement and city management, to have an advance knowledge of such events, as it can help them mitigate the safety risks and handle important challenges such as managing traffic, and so forth. Predicting dispersal events is also beneficial to Taxi drivers and/or ride-sharing services, as it will help them respond to an unexpected demand and gain competitive advantage. Large urban datasets such as detailed trip records and point of interest ( POI ) data make such predictions achievable. The related literature mainly focused on taxi demand prediction. The pattern of the demand was assumed to be repetitive and proposed methods aimed at capturing those patterns. However, dispersal events are, by definition, violations of those patterns and are, understandably, missed by the methods in the literature. We proposed a different approach in our prior work [32]. We showed that dispersal events can be predicted by learning the complex patterns of arrival and other features that precede them in time. We proposed a survival analysis formulation of this problem and proposed a two-stage framework (DILSA), where a deep learning model predicted the survival function at each point in time in the future. We used that prediction to determine the time of the dispersal event in the future, or its non-occurrence. However, DILSA is subject to a few limitations. First, based on evidence from the data, mobility patterns can vary through time at a given location. DILSA does not distinguish between different mobility patterns through time. Second, mobility patterns are also different for different locations. DILSA does not have the capability to directly distinguish between different locations based on their mobility patterns. In this article, we address these limitations by proposing a method to capture the interaction between POIs and mobility patterns and we create vector representations of locations based on their mobility patterns. We call our new method DILSA+. We conduct extensive case studies and experiments on the NYC Yellow taxi dataset from 2014 to 2016. Results show that DILSA+ can predict events in the next 5 hours with an F1-score of 0.66. It is significantly better than DILSA and the state-of-the-art deep learning approaches for taxi demand prediction. 
    more » « less