skip to main content


Title: Computational analysis of copper electrodeposition into a porous preform
Electroplating of metals into a porous preform with conductive walls is relevant in the fabrication of structural composites, fuel cells and batteries, and microelectronics. Electrodeposition process parameters, such as direct current or pulsed current, electric potential, and electrolyte concentration, as well as preform geometry, have important implications in the process outcomes including the filling process and the percentage of the infiltrated volume. Although electroplating into a vertical interconnect access (with nonconductive walls) for microelectronic applications has been extensively studied, the "flow-through" electroplating into a channel geometry with conducive walls has not been previously investigated. Here, copper infiltration into a such channel has been investigated using computational analysis for the first time. The effects of the inlet flow velocity, potential, electrolyte concentration, and microchannel geometry are systematically studied to quantify their influence on the electrodeposition rate, uniformity of the deposition front, and the infiltrated area within the channel. Computational results revealed that the unfilled area can be reduced to lower than 1% with a low applied potential, a high electrolyte concentration, and no inflow velocity. The results can be used to guide experiments involving electroplating metals into porous preforms toward reliable and reproducible manufacturing processes.  more » « less
Award ID(s):
2152732
NSF-PAR ID:
10342045
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AIP Advances
Volume:
12
Issue:
5
ISSN:
2158-3226
Page Range / eLocation ID:
055020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium metal penetrations through the liquid-electrolyte-wetted porous separator and solid electrolytes are a major safety concern of next-generation rechargeable metal batteries. Penetrations were frequently discovered to occur through only a few isolated channels, as revealed by “black spots” on both sides of the separator or electrolyte, which manifest a highly localized ionic flux or current density. Predictions of the penetration time have been difficult due to the hidden and unclear dynamics in these penetration channels. Here, using glass capillary cells, we investigate for the first time the unexpectedly sensitive influence of channel geometry on the concentration polarization and dendrite initiation processes. The characteristic time for the complete depletion of salt concentration at the surface of the advancing electrode, i.e. Sand's time, exhibits a nonlinear dependence on the curvature of the channel walls along the axial direction. While a positively deviated Sand's time scaling exponent can be used to infer a converging penetration area through the electrolyte, a negatively deviated scaling exponent suggests that diffusion limitations can be avoided in expanding channels, such that the fast-advancing tip-growing dendrites will not be initiated. The safety design of rechargeable metal batteries will benefit from considering the true local current densities and the conduction structures. 
    more » « less
  2. The physiochemical nature of reactive metal electrodeposits during the early stages of electrodeposition is rarely studied but known to play an important role in determining the electrochemical stability and reversibility of electrochemical cells that utilize reactive metals as anodes. We investigated the early-stage growth dynamics and reversibility of electrodeposited lithium in liquid electrolytes infused with brominated additives. On the basis of equilibrium theories, we hypothesize that by regulating the surface energetics and surface ion/adatom transport characteristics of the interphases formed on Li, Br-rich electrolytes alter the morphology of early-stage Li electrodeposits; enabling late-stage control of growth and high electrode reversibility. A combination of scanning electron microscopy (SEM), image analysis, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and contact angle goniometry are employed to evaluate this hypothesis by examining the physical–chemical features of the material phases formed on Li. We report that it is possible to achieve fine control of the early-stage Li electrodeposit morphology through tuning of surface energetic and ion diffusion properties of interphases formed on Li. This control is shown further to translate to better control of Li electrodeposit morphology and high electrochemical reversibility during deep cycling of the Li metal anode. Our results show that understanding and eliminating morphological and chemical instabilities in the initial stages of Li electroplating via deliberately modifying energetics of the solid electrolyte interphase (SEI) is a feasible approach in realization of deeply cyclable reactive metal batteries.

     
    more » « less
  3. The use of inorganic solid-ionic conductors with a metal electrode, has been proposed as a way to increase energy density, decrease capacity loss and prevent failure from metal propagation. Current observations of Li-metal electrodes causing cell shorting in solid-state systems have been identified as main obstacles limiting the development of this technology. However, many aspects of the involved phenomenon have not been fully addressed theoretically. In this work, we derive a mathematical model of electrodeposition-induced plastic flow in metal/inorganic solid-conductor systems. We use a semi-analytical solution to derive pressure increase expressions at metal protrusions and assess the possibility of fracture. The results give flow solutions analogous to laminar channel flow. The solutions also show how taking into account a boundary traction potential from built up pressure, leads to ionic redistribution and effectively screens isolated flaws, making local current focusing an incomplete explanation for observed electrolyte fracture. We show that the boundary traction potential sets a maximum value for the pressure increase that can occur from deposition at an isolated flaw. We derive conditions under which fracture can occur, and quantify the role of ionic conductivity and electrolyte fracture toughness in extending safe operating regimes of solid-state electrolytes with metal electrodes.

     
    more » « less
  4. Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratio of active materials. Catalysts such as MnO 2 and Co dopants were employed to accelerate the sulfur conversion reaction during the charge and discharge process. 5 However, catalysts based on transition metals suffer from poor electronic conductivity. Other catalysts such as transition metal dopants are also limited due to the increased process complexities. . In addition, the severe shuttle effects in Li-S batteries may lead to fast failures of the battery. Constructing a protection layer on the separator for limiting the transmission of soluble polysulfides is considered an effective way to eliminate the shuttle phenomenon. However, the soluble sulfides still can largely dissolve around the cathode side causing the sluggish reaction condition for sulfur conversion. 5 To mitigate the issues above, herein we demonstrate a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative vapor deposition (oCVD). Specifically, the electrode is strategically designed into a hierarchal hollow structure via stereolithography technique to increase sulfur usage. The active material concentration loaded to the battery cathode is controlled precisely during 3D printing by adjusting the number of printed layers. Owing to its freedom in geometry and structure, the suggested design is expected to improve the Li ions and electron transport rate considerably, and hence, the battery power density. The printed cathode is sintered at 700 °C at N 2 atmosphere to achieve carbonization of the cathode during which intrinsic carbon defects (e.g., pentagon carbon) as catalytic defect sites are in-situ generated on the cathode. The intrinsic carbon defects equipped with adequate electronic conductivity. The sintered 3D cathode is then transferred to the oCVD chamber for depositing a thin PEDOT layer as a protection layer to restrict dissolutions of sulfur compounds in the cathode. Density functional theory calculation reveals the electronic state variance between the structures with and without defects, the structure with defects demonstrates the higher kinetic condition for sulfur conversion. To further identify the favorable reaction dynamic process, the in-situ XRD is used to characterize the transformation between soluble and insoluble polysulfides, which is the main barrier in the charge and discharge process of Li-S batteries. The results show the oCVD coated 3D printed sulfur cathode exhibits a much higher kinetic process for sulfur conversion, which benefits from the highly tailored hierarchal hollow structure and the defects engineering on the cathode. Further, the oCVD coated 3D printed sulfur cathode also demonstrates higher stability during long cycling enabled by the oCVD PEDOT protection layer, which is verified by an absorption energy calculation of polysulfides at PEDOT. Such modeling and analysis help to elucidate the fundamental mechanisms that govern cathode performance and degradation in Li-S batteries. The current study also provides design strategies for the sulfur cathode as well as selection approaches to novel battery systems. References: Bhargav, A., (2020). Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule 4 , 285-291. Chung, S.-H., (2018). Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials 28 , 1801188. Peng, H.-J.,(2017). Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 7 , 1700260. Chu, T., (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy 3 , 424-439. Shi, Z., (2021). Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials 11 . Figure 1 
    more » « less
  5. Abstract

    Despite the advantages of aqueous zinc (Zn) metal batteries (AZMB) like high specific capacity (820 mAh g−1and 5,854 mAh cm−3), low redox potential (−0.76 V vs. the standard hydrogen electrode), low cost, water compatibility, and safety, the development of practically relevant batteries is plagued by several issues like unwanted hydrogen evolution reaction (HER), corrosion of Zn substrate (insulating ZnO, Zn(OH)2, Zn(SO4)x(OH)y, Zn(ClO4)x(OH)yetc. passivation layer), and dendrite growth. Controlling and suppressing HER activity strongly correlates with the long‐term cyclability of AZMBs. Therefore, a precise quantitative technique is needed to monitor the real‐time dynamics of hydrogen evolution during Zn electrodeposition. In this study, we quantify hydrogen evolution using in situ electrochemical mass spectrometry (ECMS). This methodology enables us to determine a correction factor for the faradaic efficiency of this system with unmatched precision. For instance, during the electrodeposition of zinc on a copper substrate at a current density of 1.5 mA/cm2for 600 seconds, 0.3 % of the total charge is attributed to HER, while the rest contributes to zinc electrodeposition. At first glance, this may seem like a small fraction, but it can be detrimental to the long‐term cycling performance of AZMBs. Furthermore, our results provide insights into the correlation between HER and the porous morphology of the electrodeposited zinc, unravelling the presence of trapped H2and Zn corrosion during the charging process. Overall, this study sets a platform to accurately determine the faradaic efficiency of Zn electrodeposition and provides a powerful tool for evaluating electrolyte additives, salts, and electrode modifications aimed at enhancing long‐term stability and suppressing the HER in aqueous Zn batteries.

     
    more » « less