Abstract On 18 November 2022, a large earthquake struck offshore southern Sumatra, generating a tsunami with 25 cm peak amplitude recorded at tide gauge station SBLT. OurW‐phase solution indicates a shallow dip of 6.2°, compatible with long‐period surface wave radiation patterns. Inversion of teleseismic body waves indicates a shallow slip distribution extending from about 10 km deep to near the trench with maximum slip of ∼4.1 m and seismic moment of Nm (MW7.3). Joint modeling of seismic and tsunami data indicates a shallow rigidity of ∼23 GPa. We find a low moment‐scaled radiated energy of , similar to that of the 2010MW7.8 Mentawai event () and other tsunami earthquakes. These characteristics indicate that the 2022 event should be designated as a smaller moment magnitude tsunami earthquake compared to the other 12 well‐documented global occurrences since 1896. The 2022 event ruptured up‐dip of the 2007MW8.4 Bengkulu earthquake, demonstrating shallow seismogenic capability of a megathrust that had experienced both a deeper seismic event and adjacent shallow aseismic afterslip. We consider seismogenic behavior of shallow megathrusts and concern for future tsunami earthquakes in subduction zones globally, noting a correlation between tsunami earthquake occurrence and subducting seafloor covered with siliceous pelagic sediments. We suggest that the combination of pelagic clay and siliceous sediments and rough seafloor topography near the trench play important roles in controlling the genesis of tsunami earthquakes along Sumatra and other regions, rather than the subduction tectonic framework of accretionary or erosive margin.
more »
« less
Data report: iodine in interstitial waters of outer-trench sediments off Sumatra Subduction Zone, IODP Expedition 362
Outer-trench sediments offshore Sumatra were drilled at Sites U1480 and U1481 during International Ocean Discovery Program (IODP) Expedition 362. This expedition aimed to drill the thick outer-trench sediments (up to 4–5 km) to better understand the mechanisms of shallow mega-thrust slip in the Sumatra subduction system. The iodine concentration dissolved in the interstitial water collected from these sites, ~250 km southwest of the subduction zone, was determined to understand the geochemical environment and iodine origin in the outer-trench sediment. The iodine concentrations increase with depth from seawater level to ~100 µM (270 times higher than seawater). In the outer-trench sediments offshore Sumatra, the iodine profile results from a complex process of the iodine-rich fluid derived from the basement, in situ iodine release caused by the decomposition of organic materials, and freshening due to mineral dehydration.
more »
« less
- Award ID(s):
- 1326927
- PAR ID:
- 10342132
- Date Published:
- Journal Name:
- Proceedings of the International Ocean Discovery Program
- Volume:
- 362
- Issue:
- 206
- ISSN:
- 2377-3189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The extremely large slip that occurred on the shallow portion of the Japan Trench subduction zone during the 2011 Mw 9.1 Tohoku-oki earthquake directly contributed to the devastating tsunami that inundated the Pacific coast of Japan. International Ocean Discovery Program (IODP) Expedition 405 (Tracking Tsunamigenic Slip Across the Japan Trench) aimed to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface during the 2011 Tohoku-oki earthquake to improve understanding of the factors that allow slip to the trench on subduction zones. Expedition 405 implemented a combined logging, coring, and observatory operational plan at two sites: Site C0026, ~8 km seaward of the Japan Trench, to characterize the input sediments to the subduction zone and Site C0019, ~6 km landward of the trench, where the plate boundary fault zone is present at ~825 meters below seafloor (mbsf). At Site C0026, the input section was logged to ~430 mbsf with a logging-while-drilling (LWD) assembly that characterized the succession of sediments and rocks from the seafloor to the basaltic rocks of the oceanic crust. Cores recovered from four holes as deep as 290 mbsf contain a sequence of hemipelagic and pelagic sediments that will be input into the shallow subduction system and therefore control both the localization of the plate boundary fault zone and the slip behavior of the plate boundary. Site C0019 was previously drilled in 2012 during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project [JFAST]), and revisiting this site allowed temporal variations in the frontal prism and plate boundary fault zone to be evaluated. The LWD data to ~980 mbsf characterized the frontal prism, plate boundary fault zone, and lower plate to the basaltic volcanic rocks. Cores were recovered from multiple holes that contain a variety of muds from the frontal prism and the plate boundary fault zone, as well as lower plate materials. Comparison with the sediments from Site C0026 provides a basis to interpret the tectonic and sedimentological processes operating in the dynamic environment of the frontal prism. Cores from the plate boundary fault zone provide a unique window into the structural complexity of an active plate boundary fault that is known to host large seismic slip. Two borehole observatories were installed at Site C0019 that contain temperature sensors deployed to take measurements over a period of years and reveal the hydrogeologic structure of the shallow subduction system. These hugely successful drilling operations, combined with postexpedition work to measure the mechanical, frictional, paleomagnetic, and hydrogeologic properties of the core samples and to constrain the history of past seismic slip at Site C0019, will provide an unprecedented opportunity to advance our understanding of shallow subduction systems. Outreach during the expedition leveraged and elevated the success of the operations by sharing the outcomes with a variety of domestic and international audiences, including scientists, students, educators, stakeholders, and the general public. Thanks to the efforts of a large group of onboard outreach officers and their onshore support, activities included ship-to-shore broadcast events; interviews with science party members and crew; the publication of videos, blogs, magazine articles, and social media posts; and development of formalized classroom lesson plans and materials.more » « less
-
The extremely large slip that occurred on the shallow portion of the Japan Trench subduction zone during the 2011 Mw 9.1 Tohoku-oki earthquake directly contributed to the devastating tsunami that inundated the Pacific coast of Japan. International Ocean Drilling Program (IODP) Expedition 405 aimed to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface during the 2011 Tohoku-oki earthquake to improve understanding of the factors that slip to the trench on subduction zones. Expedition 405 implemented a combined logging, coring, and observatory operational plan at two sites: Site C0026 ~8 km seaward of the Japan Trench to characterize the input sediments to the subduction zone and Site C0019 ~6 km landward of the trench where the plate boundary fault zone is present at ~825 meters below seafloor (mbsf). At Site C0026, the input section was logged to ~430 mbsf with a logging-while-drilling (LWD) assembly that characterized the succession of sediments and rocks from the seafloor to the basaltic rocks of the oceanic crust. Cores recovered from four holes as deep as 290 mbsf contain a sequence of hemipelagic and pelagic sediments that will be input into the shallow subduction system and therefore control both the localization of the plate boundary fault zone and the slip behavior of the plate boundary. Site C0019 was previously drilled in 2012 during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project [JFAST]), so revisiting this site allowed temporal variations in the frontal prism and plate boundary fault zone to be evaluated. The LWD data to ~960 mbsf characterized the frontal prism, plate boundary fault zone, and lower plate to the basaltic volcanic rocks. Cores were recovered from multiple holes that contain a variety of muds from the frontal prism and the plate boundary fault zone, as well as lower plate materials. Comparison with the sediments from Site C0026 provides a basis to interpret the tectonic and sedimentological processes operating in the dynamic environment of the frontal prism. Cores from the plate boundary fault zone provide a unique window into the structural complexity of an active plate boundary fault that is known to host large seismic slip. Two borehole observatories were installed at Site C0019 that contain temperature sensors deployed to measure temperature over a period of years and reveal the hydrogeologic structure of the shallow subduction system. These hugely successful drilling operations, combined with postexpedition work to measure the mechanical, frictional, paleomagnetic, and hydrogeologic properties of the core samples and to constrain the history of past seismic slip at Site C0019, provide an unprecedented opportunity to advance our understanding of shallow subduction systems. Outreach during the expedition leveraged and elevated the success of the operations by sharing the outcomes with diverse domestic and international audiences, including scientists, students, educators, stakeholders, and the general public. Thanks to the efforts of a large group of onboard outreach officers and their onshore support, activities included ship-to-shore broadcast events; interviews with science party members and crew; the publication of videos, blogs, magazine articles, and social media posts; and development of formalized classroom lesson plans and materials.more » « less
-
null (Ed.)Inputs to the Hikurangi subduction zone, offshore North Island, New Zealand, include volcaniclastic conglomerates that were deposited during the Late Cretaceous on the flanks of the subducting basement of Hikurangi Plateau. The overlying succession of pelagic carbonates is early Paleocene to early Pleistocene in age and ranges in composition from calcareous mudstone to muddy chalk and chalk. A thick wedge of Quaternary trench sediments occupies the top of the stratigraphic succession. International Ocean Discovery Program Expedition 375 cored those subduction inputs at two sites. Site U1520 is located on the distal edge of the trench, and Site U1526 is located near the crest of Tūranganui Knoll, where a highly condensed section of pelagic-hemipelagic sediment covers the basalt basement. This report provides the results of 128 X-ray diffraction analyses of the clay-sized fraction (<2 µm spherical settling equivalent), where smectite + illite + undifferentiated (chlorite + kaolinite) + quartz = 100%. Clay minerals in the altered volcaniclastic conglomerates and basalt consist almost exclusively of smectite. At Site U1520, the normalized abundance of smectite in overlying biocalcareous sediments ranges from 28.3 to 72.9 wt% (mean = 54.2 wt%), whereas the abundance of illite ranges from 16.1 to 49.0 wt% (mean = 32.0 wt%). The range for undifferentiated chlorite + kaolinite is 0.3–17.8 wt% (mean = 7.4 wt%), and the range for clay-sized quartz is 2.7–20.5 wt% (mean = 6.4 wt%). Upsection depletion of smectite in those sediments is balanced by upsection enrichment of illite. That same age-dependent trend is evident in coeval biocalcareous drift sediments from Ocean Drilling Program Sites 1123 (North Chatham drift) and 1124 (Rekohu drift). Moving downsection at Site U1520, indicators of clay diagenesis are inconsistent. Values of illite crystallinity index increase (i.e., peak broadening), whereas the proportion of illite within illite/smectite mixed-layer clays increases with depth.more » « less
-
International Ocean Discovery Program (IODP) Expedition 386, Japan Trench Paleoseismology (offshore period: 13 April to 1 June 2021; Onshore Science Party: 14 February to 14 March 2022) was designed to test the concept of submarine paleoseismology in the Japan Trench, the area where the last, and globally only one out of four instrumentally-recorded, giant (i.e. magnitude 9 class) earthquake occurred back in 2011. “Submarine paleoseismology” is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in the stratigraphic succession, to reconstruct the long-term history of earthquakes and to deliver observational data that help to reduce uncertainties in seismic hazard assessment for long return periods. This expedition marks the first time, giant piston coring (GPC) was used in IODP, and also the first time, partner IODP implementing organizations cooperated in jointly implementing a mission-specific platform expedition. We successfully collected 29 GPCs at 15 sites (1 to 3 holes each; total core recovery 831 meters), recovering 20 to 40-meter-long, continuous, upper Pleistocene to Holocene stratigraphic successions of 11 individual trench-fill basins along an axis-parallel transect from 36°N – 40.4°N, at water depth between 7445-8023 m below sea level. These offshore expedition achievements reveal the first high-temporal and high spatial resolution investigation and sampling of a hadal oceanic trench, that form the deepest and least explored environments on our planet. The cores are currently being examined by multimethod applications to characterize and date hadal trench sediments and extreme event deposits, for which the detailed sedimentological, physical and (bio-)geochemical features, stratigraphic expressions and spatiotemporal distribution will be analyzed for proxy evidence of giant earthquakes and (bio-)geochemical cycling in deep sea sediments. Initial preliminary results presented in this EGU presentation reveal event-stratigraphic successions comprising several 10s of potentially giant-earthquake related event beds, revealing a fascinating record that will unravel the earthquake history of the different along-strike segments that is 10–100 times longer than currently available information. Post-Expedition research projects further analyzing these initial IODP data sets will (i) enable statistically robust assessment of the recurrence patterns of giant earthquakes, there while advancing our understanding of earthquake induced geohazards along subduction zones and (ii) provide new constraints on sediment and carbon flux of event-triggered sediment mobilization to a deep-sea trench and its influence on the hadal environment. IODP Expedition 386 Science Party: Piero Bellanova; Morgane Brunet; Zhirong Cai; Antonio Cattaneo; Tae Soo Chang; Kanhsi Hsiung; Takashi Ishizawa; Takuya Itaki; Kana Jitsuno; Joel Johnson; Toshiya Kanamatsu; Myra Keep; Arata Kioka; Christian Maerz; Cecilia McHugh; Aaron Micallef; Luo Min; Dhananjai Pandey; Jean Noel Proust; Troy Rasbury; Natascha Riedinger; Rui Bao; Yasufumi Satoguchi; Derek Sawyer; Chloe Seibert; Maxwell Silver; Susanne Straub; Joonas Virtasalo; Yonghong Wang; Ting-Wei Wu; Sarah Zellersmore » « less
An official website of the United States government

