skip to main content


Title: JEDAI: A System for Skill-Aligned Explainable Robot Planning
This paper presents JEDAI Explains Decision-Making AI (JEDAI), an AI system designed for outreach and educational efforts aimed at non-AI experts. JEDAI features a novel synthesis of research ideas from integrated task and motion planning and explainable AI. JEDAI helps users create high-level, intuitive plans while ensuring that they will be executable by the robot. It also provides users customized explanations about errors and helps improve their understanding of AI planning as well as the limits and capabilities of the underlying robot system.  more » « less
Award ID(s):
1942856
NSF-PAR ID:
10342142
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MAARS (Machine leaning-based Analytics for Automated Rover Systems) is an ongoing JPL effort to bring the latest self-driving technologies to Mars, Moon, and beyond. The ongoing AI revolution here on Earth is finally propagating to the red planet as the High Performance Spaceflight Computing (HPSC) and commercial off-the-shelf (COTS) system-on-a-chip (SoC), such as Qualcomm's Snapdragon, become available to rovers. In this three year project, we are developing, implementing, and benchmarking a wide range of autonomy algorithms that would significantly enhance the productivity and safety of planetary rover missions. This paper is to provide the latest snapshot of the project with broad and high-level description of every capability that we are developing, including scientific scene interpretation, vision-based traversability assessment, resource-aware path planning, information-theoretic path planning, on-board strategic path planning, and on-board optimal kinematic settling for accurate collision checking. All of the onboard software capabilities will be integrated into JPL's Athena test rover using ROS (Robot Operating System). 
    more » « less
  2. We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning , the human, robot and IoT, with one single mobile AR device. Users can perform task authoring with the Augmented Reality (AR) handheld interface, then placing the AR device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot, and the IoT oriented tasks, and guides the path planning execution with the embedded simultaneous localization and mapping (SLAM) capability. We demonstrate that V.Ra enables instant, robust and intuitive room-scale navigatory and interactive task authoring through various use cases and preliminary studies. 
    more » « less
  3. We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning (human-robot-IoT) with one single AR-SLAM device. Users can perform task authoring in an analogous manner with the Augmented Reality (AR) interface. Then placing the device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot and IoT oriented tasks, and guides the path planning execution with the SLAM capability. 
    more » « less
  4. With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability. 
    more » « less
  5. To obtain more consistent measurements through the course of a wheat growing season, we conceived and designed an autonomous robotic platform that performs collision avoidance while navigating in crop rows using spatial artificial intelligence (AI). The main constraint the agronomists have is to not run over the wheat while driving. Accordingly, we have trained a spatial deep learning model that helps navigate the robot autonomously in the field while avoiding collisions with the wheat. To train this model, we used publicly available databases of prelabeled images of wheat, along with the images of wheat that we have collected in the field. We used the MobileNet single shot detector (SSD) as our deep learning model to detect wheat in the field. To increase the frame rate for real-time robot response to field environments, we trained MobileNet SSD on the wheat images and used a new stereo camera, the Luxonis Depth AI Camera. Together, the newly trained model and camera could achieve a frame rate of 18–23 frames per second (fps)—fast enough for the robot to process its surroundings once every 2–3 inches of driving. Once we knew the robot accurately detects its surroundings, we addressed the autonomous navigation of the robot. The new stereo camera allows the robot to determine its distance from the trained objects. In this work, we also developed a navigation and collision avoidance algorithm that utilizes this distance information to help the robot see its surroundings and maneuver in the field, thereby precisely avoiding collisions with the wheat crop. Extensive experiments were conducted to evaluate the performance of our proposed method. We also compared the quantitative results obtained by our proposed MobileNet SSD model with those of other state-of-the-art object detection models, such as the YOLO V5 and Faster region-based convolutional neural network (R-CNN) models. The detailed comparative analysis reveals the effectiveness of our method in terms of both model precision and inference speed.

     
    more » « less