skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot Planning
This paper addresses the problem of learning abstractions that boost robot planning performance while providing strong guarantees of reliability. Although state-of-the-art hierarchical robot planning algorithms allow robots to efficiently compute long-horizon motion plans for achieving user desired tasks, these methods typically rely upon environment-dependent state and action abstractions that need to be hand-designed by experts. We present a new approach for bootstrapping the entire hierarchical planning process. This allows us to compute abstract states and actions for new environments automatically using the critical regions predicted by a deep neural network with an auto-generated robot-specific architecture. We show that the learned abstractions can be used with a novel multi-source bi-directional hierarchical robot planning algorithm that is sound and probabilistically complete. An extensive empirical evaluation on twenty different settings using holonomic and non-holonomic robots shows that (a) our learned abstractions provide the information necessary for efficient multi-source hierarchical planning; and that (b) this approach of learning, abstractions, and planning outperforms state-of-the-art baselines by nearly a factor of ten in terms of planning time on test environments not seen during training.  more » « less
Award ID(s):
1909370
PAR ID:
10342306
Author(s) / Creator(s):
;
Editor(s):
Pelachaud, Catherine; Taylor, Matthew E.; Mascardi, Viviana
Date Published:
Journal Name:
International Conference on Autonomous Agents and Multiagent Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the problem of learning abstractions that boost robot planning performance while providing strong guarantees of reliability. Although state-of-the-art hierarchical robot planning algorithms allow robots to efficiently compute long-horizon motion plans for achieving user desired tasks, these methods typically rely upon environment-dependent state and action abstractions that need to be hand-designed by experts. We present a new approach for bootstrapping the entire hierarchical planning process. This allows us to compute abstract states and actions for new environments automatically using the critical regions predicted by a deep neural network with an auto-generated robot-specific architecture. We show that the learned abstractions can be used with a novel multi-source bi-directional hierarchical robot planning algorithm that is sound and probabilistically complete. An extensive empirical evaluation on twenty different settings using holonomic and non-holonomic robots shows that (a) our learned abstractions provide the information necessary for efficient multi-source hierarchical planning; and that (b) this approach of learning, abstractions, and planning outperforms state-of-the-art baselines by nearly a factor of ten in terms of planning time on test environments not seen during training. 
    more » « less
  2. null (Ed.)
    Enabling robots to learn tasks and follow instructions as easily as humans is important for many real-world robot applications. Previous approaches have applied machine learning to teach the mapping from language to low dimensional symbolic representations constructed by hand, using demonstration trajectories paired with accompanying instructions. These symbolic methods lead to data efficient learning. Other methods map language directly to high-dimensional control behavior, which requires less design effort but is data-intensive. We propose to first learning symbolic abstractions from demonstration data and then mapping language to those learned abstractions. These symbolic abstractions can be learned with significantly less data than end-to-end approaches, and support partial behavior specification via natural language since they permit planning using traditional planners. During training, our approach requires only a small number of demonstration trajectories paired with natural language—without the use of a simulator—and results in a representation capable of planning to fulfill natural language instructions specifying a goal or partial plan. We apply our approach to two domains, including a mobile manipulator, where a small number of demonstrations enable the robot to follow navigation commands like “Take left at the end of the hallway,” in environments it has not encountered before. 
    more » « less
  3. Enabling robots to learn tasks and follow instructions as easily as humans is important for many real-world robot applications. Previous approaches have applied machine learning to teach the mapping from language to low dimensional symbolic representations constructe by hand, using demonstration trajectories paired with accompanying instructions. These symbolic methods lead to data efficient learning. Other methods map language directly to high-dimensional control behavior, which requires less design effort but is data-intensive. We propose to first learning symbolic abstractions from demonstration data and then mapping language to those learned abstractions. These symbolic abstractions can be learned with significantly less data than end-to-end approaches, and support partial behavior specification via natural language since they permit planning using traditional planners. During training, our approach requires only a small number of demonstration trajectories paired with natural language—without the use of a simulator—and results in a representation capable of planning to fulfill natural language instructions specifying a goal or partial plan. We apply our approach to two domains, including a mobile manipulator, where a small number of demonstrations enable the robot to follow navigation commands like “Take left at the end of the hallway,” in environments it has not encountered before. 
    more » « less
  4. Diffusion models have recently been successfully applied to a wide range of robotics applications for learning complex multi-modal behaviors from data. However, prior works have mostly been confined to single-robot and small-scale environments due to the high sample complexity of learning multi-robot diffusion models. In this paper, we propose a method for generating collision-free multi-robot trajectories that conform to underlying data distributions while using only single-robot data. Our algorithm, Multi-robot Multi-model planning Diffusion (MMD), does so by combining learned diffusion models with classical search-based techniques – generating data-driven motions under collision constraints. Scaling further, we show how to compose multiple diffusion models to plan in large environments where a single diffusion model fails to generalize well. We demonstrate the effectiveness of our approach in planning for dozens of robots in a variety of simulated scenarios motivated by logistics environments. View video demonstrations in our supplementary material, and our code at: github.com/yoraish/mmd. 
    more » « less
  5. null (Ed.)
    Mobile robots are increasingly populating homes, hospitals, shopping malls, factory floors, and other human environments. Human society has social norms that people mutually accept; obeying these norms is an essential signal that someone is participating socially with respect to the rest of the population. For robots to be socially compatible with humans, it is crucial for robots to obey these social norms. In prior work, we demonstrated a Socially-Aware Navigation (SAN) planner, based on Pareto Concavity Elimination Transformation (PaCcET), in a hallway scenario, optimizing two objectives so the robot does not invade the personal space of people. This article extends our PaCcET-based SAN planner to multiple scenarios with more than two objectives. We modified the Robot Operating System’s (ROS) navigation stack to include PaCcET in the local planning task. We show that our approach can accommodate multiple Human-Robot Interaction (HRI) scenarios. Using the proposed approach, we achieved successful HRI in multiple scenarios such as hallway interactions, an art gallery, waiting in a queue, and interacting with a group. We implemented our method on a simulated PR2 robot in a 2D simulator (Stage) and a pioneer-3DX mobile robot in the real-world to validate all the scenarios. A comprehensive set of experiments shows that our approach can handle multiple interaction scenarios on both holonomic and non-holonomic robots; hence, it can be a viable option for a Unified Socially-Aware Navigation (USAN). 
    more » « less