skip to main content

This content will become publicly available on December 1, 2022

Title: Youth as Climate Change Messengers: A Picture Is Worth a Thousand Words
Artwork created by children can effectively communicate science content, especially for topics that are of universal concern for the public but may cause apprehension, like climate change. This commentary describes artwork from a youth art contest about climate change in which the winning art was displayed on public buses. Young artists learned about climate science while creating images that adults and youth easily engaged with in public spaces. Thus, we suggest that connecting youth with science through art, and then using youth-generated art to engage the general public in science learning can be an effective vehicle for science communication.
; ; ;
Award ID(s):
1906793 1906640
Publication Date:
Journal Name:
Science Communication
Page Range or eLocation-ID:
814 to 823
Sponsoring Org:
National Science Foundation
More Like this
  1. Community and citizen science on climate change-influenced topics offers a way for participants to actively engage in understanding the changes and documenting the impacts. As in broader climate change education, a focus on the negative impacts can often leave participants feeling a sense of powerlessness. In large scale projects where participation is primarily limited to data collection, it is often difficult for volunteers to see how the data can inform decision making that can help create a positive future. In this paper, we propose and test a method of linking community and citizen science engagement to thinking about and planningmore »for the future through scenarios story development using the data collected by the volunteers. We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings. Using qualitative analysis of educator interviews and youth work samples, we found that using a scenario stories development mini-workshop allowed the youth to use their own data and the data from other sites to imagine the future and possible actions to sustain berry resources for their communities. This process allowed youth to exercise key cognitive skills for sustainability, including systems thinking, futures thinking, and strategic thinking. The analysis suggested that youth would benefit from further practicing the skill of envisioning oneself as an agent of change in the environment. Educators valued working with lead scientists on the project and the experience for youth to participate in the interdisciplinary program. They also identified the combination of the berry data collection, analysis and scenarios stories activities as a teaching practice that allowed the youth to situate their citizen science participation in a personal, local and cultural context. The majority of the youth groups pursued some level of stewardship action following the activity. The most common actions included collecting additional years of berry data, communicating results to a broader community, and joining other community and citizen science projects. A few groups actually pursued solutions illustrated in the scenario stories. The pairing of community and citizen science with scenario stories development provides a promising method to connect data to action for a sustainable and resilient future.« less
  2. Civic-science integrates science knowledge with civic practice but differs from the citizen-science prototype by reframing science as a public good and citizens as both recipients of and actors in policy. We draw from our studies of a civic-science model in which adolescents (majority African-American) collaborate with teachers and community partners to mitigate an environmental problem in their urban community. Based on students’ reflections on what they learn from these projects we have developed Environmental Commons theory, referring both to the natural resources on which life depends and the public spaces where people negotiate how they will care for those resourcesmore »and for the communities they inhabit. We contend that, to solve twentyfirst century environmental and climate challenges, it is myopic to rely on elite groups of scientific experts and policymakers. Instead, a civic science skill set should be part of the preparation of younger generations to be informed citizens and youth from urban ethnic minority communities should be a high priority. From an eco-justice standpoint, these groups bear a disproportionate share of the burdens of environmental pollution and climate change yet historically have been marginalized by the institution of science and, until recently, relatively neglected by environmental movements.« less
  3. In the United States, Black and Latinx students are underrepresented in STEM courses and careers due to a dearth of culturally relevant opportunities, which in turn are connected to broader issues of social justice. Place-based environmental civic science offers potential for addressing these issues by enabling students to apply their STEM learning to mitigate local environmental problems. By civic science we refer to science in which all citizens, not just experts, engage for the public good. In this paper, we report on a study in which we followed middle-and high-school science and math classes in urban schools serving racial/ethnic minoritizedmore »students as they engaged in an innovative contextualized curriculum—a place-based civic science model in which students work with STEM community partners to address an environmental issue in their community. We draw from students’ open-ended reflections on what they learned from participating in place-based environmental civic science projects that could help their communities. Thematic analyses of reflections collected from 291 students point to beliefs in the usefulness of science to effect community change. Students articulated the science they learned or used in the project and how it could affect their community; they made references to real world applications of science in their project work and made links between STEM and civic contributions. In their own words, the majority of students noted ways that STEM was relevant to their communities now or in the future; in addition, a subset of students expressed changes in their thinking about how they personally could apply science to positively impact their communities and the ties between STEM and social justice. Analyses also point to a sense of confidence and purpose students gained from using STEM learning for their goals of community contribution. Results of this study suggest that focusing on local place as a foundation for students’ STEM learning and linking that learning to the civic contributions they can make, cultivates students’ perceptions of how they can use science to benefit their communities. Findings also suggest that engaging students in place-based civic science work provides effective foundations for nurturing STEM interest and addressing the underrepresentation of youth of color in STEM.« less
  4. Research Problem: Climate change is one of the most important environmental, social, and economic issues of our time. The documented impacts of climate change are extensive. Climate change education can help students link this global issue to students’ everyday lives, foster a climate-literate public, and serve as motivation for action. Yet prior to instructional interventions, the first step in promoting conceptual change is to describe expert and novice conceptions or mental models of the topic (Treagust and Duit 2009). Published studies about students’ climate change knowledge primarily stem from the earth and atmospheric sciences, and focus on students’ knowledge ofmore »the mechanisms causing global warming and of the abiotic systems important to climate change. Limited research has documented undergraduate students’ knowledge about the biotic impacts of climate change. Our goal was to describe student/novice and instructor/expert conceptual knowledge of the biotic impacts of climate change. Research Design: We conducted interviews with 30 undergraduates and 10 instructors who are students or teaching in Introductory Biology or Ecology classes. Our semi-structured interview protocol probed participants’ conceptions of the mechanisms, outcomes and levels of impact that climate change has on the biological world. Participants were taken from varying institutions across the US (Baccalaureate, Master’s, and Doctoral). Analyses: Following transcription of all interviews, we used thematic coding analysis to describe novice and expert conceptions of the biotic impacts to climate change. We also compared across interview populations to describe how novice and expert conceptions compare. Contribution: Our findings contribute understanding of biology student and expert knowledge of the biotic impacts of climate change and contribute more broadly to the field of climate science where research on understanding of the biotic impacts of climate change is minimal. Our work will represent a novel perspective because most climate education research at the university-level has focused on earth and atmospheric science students. Further, this work is the first step in a larger project that aims to develop valid and reliable concept inventory related to biotic impacts of climate change – an instrument sorely needed to properly address improvements to climate change education.« less
  5. While bees are critical to sustaining a large proportion of global food production, as well as pollinating both wild and cultivated plants, they are decreasing in both numbers and diversity. Our understanding of the factors driving these declines is limited, in part, because we lack sufficient data on the distribution of bee species to predict changes in their geographic range under climate change scenarios. Additionally lacking is adequate data on the behavioral and anatomical traits that may make bees either vulnerable or resilient to human-induced environmental changes, such as habitat loss and climate change. Fortunately, a wealth of associated attributesmore »can be extracted from the specimens deposited in natural history collections for over 100 years. Extending Anthophila Research Through Image and Trait Digitization (Big-Bee) is a newly funded US National Science Foundation Advancing Digitization of Biodiversity Collections project. Over the course of three years, we will create over one million high-resolution 2D and 3D images of bee specimens (Fig. 1), representing over 5,000 worldwide bee species, including most of the major pollinating species. We will also develop tools to measure bee traits from images and generate comprehensive bee trait and image datasets to measure changes through time. The Big-Bee network of participating institutions includes 13 US institutions (Fig. 2) and partnerships with US government agencies. We will develop novel mechanisms for sharing image datasets and datasets of bee traits that will be available through an open, Symbiota-Light (Gilbert et al. 2020) data portal called the Bee Library. In addition, biotic interaction and species association data will be shared via Global Biotic Interactions (Poelen et al. 2014). The Big-Bee project will engage the public in research through community science via crowdsourcing trait measurements and data transcription from images using Notes from Nature (Hill et al. 2012). Training and professional development for natural history collection staff, researchers, and university students in data science will be provided through the creation and implementation of workshops focusing on bee traits and species identification. We are also planning a short, artistic college radio segment called "the Buzz" to get people excited about bees, biodiversity, and the wonders of our natural world.« less