Abstract For decades, seismic imaging methods have been used to study the critical zone, Earth's thin, life‐supporting skin. The vast majority of critical zone seismic studies use traveltime tomography, which poorly resolves heterogeneity at many scales relevant to near‐surface processes, therefore limiting progress in critical zone science. Full‐waveform tomography can overcome this limitation by leveraging more seismic data and enhancing the resolution of geophysical imaging. In this study, we apply 2D full‐waveform tomography to match the phases of observed seismograms and elucidate previously undetected heterogeneity in the critical zone at a well‐studied catchment in the Laramie Range, Wyoming. In contrast to traveltime tomograms from the same data set, our results show variations in depth to bedrock ranging from 5 to 60 m over lateral scales of just tens of meters and image steep low‐velocity anomalies suggesting hydrologic pathways into the deep critical zone. Our results also show that areas with thick fractured bedrock layers correspond to zones of slightly lower velocities in the deep bedrock, while zones of high bedrock velocity correspond to sharp vertical transitions from bedrock to saprolite. By corroborating these findings with borehole imagery, we hypothesize that lateral changes in bedrock fracture density majorly impact critical zone architecture. Borehole data also show that our full‐waveform tomography results agree significantly better with velocity logs than previously published traveltime tomography models. Full‐waveform tomography thus appears unprecedentedly capable of imaging the spatially complex porosity structure crucial to critical zone hydrology and processes.
more »
« less
What Do P-Wave Velocities Tell Us About the Critical Zone?
Fractures in Earth's critical zone influence groundwater flow and storage and promote chemical weathering. Fractured materials are difficult to characterize on large spatial scales because they contain fractures that span a range of sizes, have complex spatial distributions, and are often inaccessible. Therefore, geophysical characterizations of the critical zone depend on the scale of measurements and on the response of the medium to impulses at that scale. Using P-wave velocities collected at two scales, we show that seismic velocities in the fractured bedrock layer of the critical zone are scale-dependent. The smaller-scale velocities, derived from sonic logs with a dominant wavelength of ~0.3 m, show substantial vertical and lateral heterogeneity in the fractured rock, with sonic velocities varying by 2,000 m/s over short lateral distances (~20 m), indicating strong spatial variations in fracture density. In contrast, the larger-scale velocities, derived from seismic refraction surveys with a dominant wavelength of ~50 m, are notably slower than the sonic velocities (a difference of ~3,000 m/s) and lack lateral heterogeneity. We show that this discrepancy is a consequence of contrasting measurement scales between the two methods; in other words, the contrast is not an artifact but rather information—the signature of a fractured medium (weathered/fractured bedrock) when probed at vastly different scales. We explore the sample volumes of each measurement and show that surface refraction velocities provide reliable estimates of critical zone thickness but are relatively insensitive to lateral changes in fracture density at scales of a few tens of meters. At depth, converging refraction and sonic velocities likely indicate the top of unweathered bedrock, indicative of material with similar fracture density across scales.
more »
« less
- Award ID(s):
- 2012353
- PAR ID:
- 10342456
- Date Published:
- Journal Name:
- Frontiers in Water
- Volume:
- 3
- ISSN:
- 2624-9375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Physical, chemical, and biological processes create and maintain the critical zone (CZ). In weathered and crystalline rocks, these processes occur over 10–100 s of meters and transform bedrock into soil. The CZ provides pore space and flow paths for groundwater, supplies nutrients for ecosystems, and provides the foundation for life. Vegetation in the aboveground CZ depends on these components and actively mediates Earth system processes like evapotranspiration, nutrient and water cycling, and hill slope erosion. Therefore, the vertical and lateral extent of the CZ can provide insight into the important chemical and physical processes that link life on the surface with geology 10–100 s meters below. In this study, we present 3.9 km of seismic refraction data in a weathered and crystalline granite in the Laramie Range, Wyoming. The refraction data were collected to investigate two ridges with clear contrasts in vegetation and slope. Given the large contrasts in slope, aspect, and vegetation cover, we expected large differences in CZ structure. However, our results suggest no significant differences in large-scale (>10 s of m) CZ structure as a function of slope or aspect. Our data appears to suggest a relationship between LiDAR-derived canopy height and depth to fractured bedrock where the tallest trees are located over regions with the shallowest depth to fractured bedrock. After separating our data by the presence or lack of vegetation, higher P-wave velocities under vegetation is likely a result of higher saturation.more » « less
-
Abstract Poisson's ratio for earth materials is usually assumed to be positive (Vp/Vs > 1.4). However, this assumption may not be valid in the critical zone because near Earth's surface effective pressures are low (<1 MPa), porosity has a wide range (0%–60%), there are significant texture changes (e.g., unconsolidated vs. fractured media), and saturation ranges from 0% to 100%. We present P‐wave (Vp) and S‐wave (Vs) velocities from seismic refraction profiles collected in weathered crystalline environments in South Carolina and Wyoming. Our data show that ∼20% of the subsurface has negative Poisson's ratios (Vp/Vsvalues < 1.4), a conclusion supported by borehole sonic logs. The low Vp/Vsvalues are confined to the fractured bedrock and saprolite. Our data support the hypothesis that weathering‐generated microcracks can produce a negative Poisson's ratio and that Vp/Vsvalues can thus provide insight into important critical zone weathering processes.more » « less
-
Abstract The creation of fractures in bedrock dictates water movement through the critical zone, controlling weathering, vadose zone water storage, and groundwater recharge. However, quantifying connections between fracturing, water flow, and chemical weathering remains challenging because of limited access to the deep critical zone. Here we overcome this challenge by coupling measurements from borehole drilling, groundwater monitoring, and seismic refraction surveys in the central California Coast Range. Our results show that the subsurface is highly fractured, which may be driven by the regional geologic and tectonic setting. The pervasively fractured rock facilitates infiltration of meteoric water down to a water table that aligns with oxidation in exhumed rock cores and is coincident with the adjacent intermittent first‐order stream channel. This work highlights the need to incorporate deep water flow and weathering due to pervasive fracturing into models of catchment water balances and critical zone weathering, especially in tectonically active landscapes.more » « less
-
Abstract Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions.more » « less
An official website of the United States government

