skip to main content


Title: Understanding COVID-19 Effects on Mobility: A Community-Engaged Approach
Abstract. Given aggregated mobile device data, the goal is to understand the impact of COVID-19 policy interventions on mobility. This problem is vital due to important societal use cases, such as safely reopening the economy. Challenges include understanding and interpreting questions of interest to policymakers, cross-jurisdictional variability in choice and time of interventions, the large data volume, and unknown sampling bias. The related work has explored the COVID-19 impact on travel distance, time spent at home, and the number of visitors at different points of interest. However, many policymakers are interested in long-duration visits to high-risk business categories and understanding the spatial selection bias to interpret summary reports. We provide an Entity Relationship diagram, system architecture, and implementation to support queries on long-duration visits in addition to fine resolution device count maps to understand spatial bias. We closely collaborated with policymakers to derive the system requirements and evaluate the system components, the summary reports, and visualizations.  more » « less
Award ID(s):
2040459 1737633
NSF-PAR ID:
10342660
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
AGILE: GIScience Series
Volume:
3
ISSN:
2700-8150
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study provides data on the feasibility and impact of video-enabled telemedicine use among patients and providers and its impact on urgent and nonurgent healthcare delivery from one large health system (NYU Langone Health) at the epicenter of the coronavirus disease 2019 (COVID-19) outbreak in the United States. Between March 2nd and April 14th 2020, telemedicine visits increased from 102.4 daily to 801.6 daily. (683% increase) in urgent care after the system-wide expansion of virtual urgent care staff in response to COVID-19. Of all virtual visits post expansion, 56.2% and 17.6% urgent and nonurgent visits, respectively, were COVID-19–related. Telemedicine usage was highest by patients 20 to 44 years of age, particularly for urgent care. The COVID-19 pandemic has driven rapid expansion of telemedicine use for urgent care and nonurgent care visits beyond baseline periods. This reflects an important change in telemedicine that other institutions facing the COVID-19 pandemic should anticipate. 
    more » « less
  2. null (Ed.)
    Agent-based models (ABM) play a prominent role in guiding critical decision-making and supporting the development of effective policies for better urban resilience and response to the COVID-19 pandemic. However, many ABMs lack realistic representations of human mobility, a key process that leads to physical interaction and subsequent spread of disease. Therefore, we propose the application of Latent Dirichlet Allocation (LDA), a topic modeling technique, to foot-traffic data to develop a realistic model of human mobility in an ABM that simulates the spread of COVID-19. In our novel approach, LDA treats POIs as "words" and agent home census block groups (CBGs) as "documents" to extract "topics" of POIs that frequently appear together in CBG visits. These topics allow us to simulate agent mobility based on the LDA topic distribution of their home CBG. We compare the LDA based mobility model with competitor approaches including a naive mobility model that assumes visits to POIs are random. We find that the naive mobility model is unable to facilitate the spread of COVID-19 at all. Using the LDA informed mobility model, we simulate the spread of COVID-19 and test the effect of changes to the number of topics, various parameters, and public health interventions. By examining the simulated number of cases over time, we find that the number of topics does indeed impact disease spread dynamics, but only in terms of the outbreak's timing. Further analysis of simulation results is needed to better understand the impact of topics on simulated COVID-19 spread. This study contributes to strengthening human mobility representations in ABMs of disease spread. 
    more » « less
  3. Background The surge of telemedicine use during the early stages of the COVID-19 pandemic has been well documented. However, scarce evidence considers the use of telemedicine in the subsequent period. Objective This study aims to evaluate use patterns of video-based telemedicine visits for ambulatory care and urgent care provision over the course of recurring pandemic waves in 1 large health system in New York City (NYC) and what this means for health care delivery. Methods Retrospective electronic health record (EHR) data of patients from January 1, 2020, to February 28, 2022, were used to longitudinally track and analyze telemedicine and in-person visit volumes across ambulatory care specialties and urgent care, as well as compare them to a prepandemic baseline (June-November 2019). Diagnosis codes to differentiate suspected COVID-19 visits from non–COVID-19 visits, as well as evaluating COVID-19–based telemedicine use over time, were compared to the total number of COVID-19–positive cases in the same geographic region (city level). The time series data were segmented based on change-point analysis, and variances in visit trends were compared between the segments. Results The emergence of COVID-19 prompted an early increase in the number of telemedicine visits across the urgent care and ambulatory care settings. This use continued throughout the pandemic at a much higher level than the prepandemic baseline for both COVID-19 and non–COVID-19 suspected visits, despite the fluctuation in COVID-19 cases throughout the pandemic and the resumption of in-person clinical services. The use of telemedicine-based urgent care services for COVID-19 suspected visits showed more variance in response to each pandemic wave, but telemedicine visits for ambulatory care have remained relatively steady after the initial crisis period. During the Omicron wave, the use of all visit types, including in-person activities, decreased. Patients between 25 and 34 years of age were the largest users of telemedicine-based urgent care. Patient satisfaction with telemedicine-based urgent care remained high despite the rapid scaling of services to meet increased demand. Conclusions The trend of the increased use of telemedicine as a means of health care delivery relative to the pre–COVID-19 baseline has been maintained throughout the later pandemic periods despite fluctuating COVID-19 cases and the resumption of in-person care delivery. Overall satisfaction with telemedicine-based care is also high. The trends in telemedicine use suggest that telemedicine-based health care delivery has become a mainstream and sustained supplement to in-person-based ambulatory care, particularly for younger patients, for both urgent and nonurgent care needs. These findings have implications for the health care delivery system, including practice leaders, insurers, and policymakers. Further investigation is needed to evaluate telemedicine adoption by key demographics, identify ongoing barriers to adoption, and explore the impacts of sustained use of telemedicine on health care outcomes and experience. 
    more » « less
  4. Abstract Understanding the scope, prevalence, and impact of the COVID-19 pandemic response will be a rich ground for research for many years. Key to the response to COVID-19 was the non-pharmaceutical intervention (NPI) measures, such as mask mandates or stay-in-place orders. For future pandemic preparedness, it is critical to understand the impact and scope of these interventions. Given the ongoing nature of the pandemic, existing NPI studies covering only the initial portion provide only a narrow view of the impact of NPI measures. This paper describes a dataset of NPI measures taken by counties in the U.S. state of Virginia that include measures taken over the first two years of the pandemic beginning in March 2020. This data enables analyses of NPI measures over a long time period that can produce impact analyses on both the individual NPI effectiveness in slowing the pandemic spread, and the impact of various NPI measures on the behavior and conditions of the different counties and state. 
    more » « less
  5. With only 536 COVID-19 cases and 11 fatalities, India took the historic decision of a 21-day national lockdown on March 25, 2020. The lockdown was first extended to May 3 soon after the analysis of this article was completed, and then to May 18 while this article was being revised. In this article, we use a Bayesian extension of the susceptible-infected-removed (eSIR) model designed for intervention forecasting to study the short- and long-term impact of an initial 21-day lockdown on the total number of COVID-19 infections in India compared to other, less severe nonpharmaceutical interventions. We compare effects of hypothetical durations of lockdown on reducing the number of active and new infections. We find that the lockdown, if implemented correctly, can reduce the total number of cases in the short term, and buy India invaluable time to prepare its health care and disease-monitoring system. Our analysis shows we need to have some measures of suppression in place after the lockdown for increased benefit (as measured by reduction in the number of cases). A longer lockdown from 42–56 days is preferable to substantially ‘flatten the curve’ when compared to 21–28 days of lockdown. Our models focus solely on projecting the number of COVID-19 infections and thus inform policymakers about one aspect of this multifaceted decision-making problem. We conclude with a discussion on the pivotal role of increased testing, reliable and transparent data, proper uncertainty quantification, accurate interpretation of forecasting models, reproducible data science methods, and tools that can enable data-driven policymaking during a pandemic. Our software products are available at covind19.org. 
    more » « less