skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bar-driven leading spiral arms in a counter-rotating dark matter halo
ABSTRACT An overwhelming majority of galactic spiral arms trail with respect to the rotation of the galaxy, though a small sample of leading spiral arms has been observed. The formation of these leading spirals is not well understood. Here we show, using collisionless N-body simulations, that a barred disc galaxy in a retrograde dark matter halo can produce long-lived (∼3 Gyr) leading spiral arms. Due to the strong resonant coupling of the disc to the halo, the bar slows rapidly and spiral perturbations are forced ahead of the bar. We predict that such a system, if observed, will also host a dark matter wake oriented perpendicular to the stellar bar. More generally, we propose that any mechanism that rapidly decelerates the stellar bar will allow leading spiral arms to flourish.  more » « less
Award ID(s):
2102185
PAR ID:
10342740
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
685 to 692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We apply the barred Schwarzschild method developed by Tahmasebzadeh et al. (2022) to a barred S0 galaxy, NGC 4371, observed by IFU instruments from the TIMER and ATLAS3D projects. We construct the gravitational potential by combining a fixed black hole mass, a spherical dark matter halo, and stellar mass distribution deprojected from 3.6 μm S$^4$G image considering an axisymmetric disc and a triaxial bar. We independently modelled kinematic data from TIMER and ATLAS3D. Both models fit the data remarkably well. We find a consistent bar pattern speed from the two sets of models with $$\Omega _{\rm p} = 23.6 \pm 2.8 \, \mathrm{km \, s^{-1} \, kpc^{-1} }$$ and $$\Omega _{\rm p} = 22.4 \pm 3.5 \, \mathrm{km \, s^{-1} \, kpc^{-1} }$$, respectively. The dimensionless bar rotation parameter is determined to be $$\mathcal {R} \equiv R_{\rm cor}/R_{\rm bar}=1.88 \pm 0.37$$, indicating a likely slow bar in NGC 4371. Additionally, our model predicts a high amount of dark matter within the bar region ($$M_{\rm DM}/ M_{\rm total}$$\sim 0.51 \pm 0.06$$), which, aligned with the predictions of cosmological simulations, indicates that fast bars are generally found in baryon-dominated discs. Based on the best-fitting model, we further decompose the galaxy into multiple 3D orbital structures, including a BP/X bar, a classical bulge, a nuclear disc, and a main disc. The BP/X bar is not perfectly included in the input 3D density model, but BP/X-supporting orbits are picked through the fitting to the kinematic data. This is the first time a real barred galaxy has been modelled utilizing the Schwarzschild method including a 3D bar. 
    more » « less
  2. ABSTRACT Our situation as occupants of the Milky Way (MW) Galaxy, bombarded by the Sagittarius dwarf galaxy, provides an intimate view of physical processes that can lead to the dynamical heating of a galactic disc. While this evolution is instigated by Sagittarius, it is also driven by the intertwined influences of the dark matter halo and the disc itself. We analyse an N-body simulation following a Sagittarius-like galaxy interacting with a MW-like host to disentangle these different influences during the stages of a minor merger. The accelerations in the disc plane from each component are calculated for each snapshot in the simulation, and then decomposed into Fourier series on annuli. The analysis maps quantify and compare the scales of the individual contributions over space and through time: (i) accelerations due to the satellite are only important around disc passages; (ii) the influence around these passages is enhanced and extended by the distortion of the dark matter halo; (iii) the interaction drives disc asymmetries within and perpendicular to the plane and the self-gravity of these distortions increase in importance with time eventually leading to the formation of a bar. These results have interesting implications for identifying different influences within our own Galaxy. Currently, Sagittarius is close enough to a plane crossing to search for localized signatures of its effect at intermediate radii, the distortion of the MW’s dark matter halo should leave its imprint in the outer disc and the disc’s own self-consistent response is sculpting the intermediate and inner disc. 
    more » « less
  3. Abstract Elongated bar-like features are ubiquitous in galaxies, occurring at the centers of approximately two-thirds of spiral disks in the nearby Universe. Due to gravitational interactions between the bar and the other components of galaxies, it is expected that angular momentum and matter will redistribute over long (Gyr) timescales in barred galaxies. Previous work ignoring the gas phase of galaxies has conclusively demonstrated that bars should slow their rotation over time due to their interaction with dark matter halos. We have performed a simulation of a Milky Way–like galactic disk hosting a strong bar, including a state-of-the-art model of the interstellar medium and a live dark matter halo. In this simulation, the bar pattern does not slow down over time, and instead it remains at a stable, constant rate of rotation. This behavior has been observed in previous simulations using more simplified models for the interstellar gas, but the apparent lack of secular evolution has remained unexplained. We find that the presence of the gas phase arrests the process by which the dark matter halo slows down a bar, a phenomenon we term bar locking. This locking is responsible for stabilizing the bar pattern speed. We find that, in a Milky Way–like disk, a gas fraction of only about 5% is necessary for this mechanism to operate. Our result naturally explains why nearly all observed bars rotate rapidly and is especially relevant for our understanding of how the Milky Way arrived at its present state. 
    more » « less
  4. Abstract In the coming decade, thousands of stellar streams will be observed in the halos of external galaxies. What fundamental discoveries will we make about dark matter from these streams? As a first attempt to look at these questions, we model Magellan/Megacam imaging of the Centaurus A (Cen A) disrupting dwarf companion Dwarf 3 (Dw3) and its associated stellar stream, to find out what can be learned about the Cen A dark matter halo. We develop a novel external galaxy stream-fitting technique and generate model stellar streams that reproduce the stream morphology visible in the imaging. We find that there are many viable stream models that fit the data well, with reasonable parameters, provided that Cen A has a halo mass larger than M 200 > 4.70 × 10 12 M ⊙ . There is a second stream in Cen A’s halo that is also reproduced within the context of this same dynamical model. However, stream morphology in the imaging alone does not uniquely determine the mass or mass distribution for the Cen A halo. In particular, the stream models with high likelihood show covariances between the inferred Cen A mass distribution, the inferred Dw3 progenitor mass, the Dw3 velocity, and the Dw3 line-of-sight position. We show that these degeneracies can be broken with radial-velocity measurements along the stream, and that a single radial velocity measurement puts a substantial lower limit on the halo mass. These results suggest that targeted radial-velocity measurements will be critical if we want to learn about dark matter from extragalactic stellar streams. 
    more » « less
  5. ABSTRACT Galaxy sizes correlate closely with the sizes of their parent dark matter haloes, suggesting a link between halo formation and galaxy growth. However, the precise nature of this relation and its scatter remains to be understood fully, especially for low-mass galaxies. We analyse the galaxy–halo size relation (GHSR) for low-mass ($$M_\star \sim 10^{7-9}\, {\rm M}_\odot$$) central galaxies over the past 12.5 billion years with the help of cosmological volume simulations (FIREbox) from the Feedback in Realistic Environments (FIRE) project. We find a nearly linear relationship between the half-stellar mass galaxy size R1/2 and the parent dark matter halo virial radius Rvir. This relation evolves only weakly since redshift z = 5: $$R_{1/2}\, [{\rm kpc}] = (0.053\pm 0.002)(R_{\rm vir}/35\, {\rm kpc})^{0.934\pm 0.054}$$, with a nearly constant scatter $$\langle \sigma \rangle = 0.084\, [{\rm dex}]$$. While this ratio is similar to what is expected from models where galaxy disc sizes are set by halo angular momentum, the low-mass galaxies in our sample are not angular momentum supported, with stellar rotational to circular velocity ratios vrot/vcirc ∼ 0.15. Introducing redshift as another parameter to the GHSR does not decrease the scatter. Furthermore, this scatter does not correlate with any of the halo properties we investigate – including spin and concentration – suggesting that baryonic processes and feedback physics are instead critical in setting the scatter in the GHSR. Given the relatively small scatter and the weak dependence of the GHSR on redshift and halo properties for these low-mass central galaxies, we propose using galaxy sizes as an independent method from stellar masses to infer halo masses. 
    more » « less