skip to main content


Title: Equity and justice in science education: Toward a pluriverse of multiple identities and onto‐epistemologies
Concepts in science education such as “science identity” and “science capital” are informed by dominant epistemological and ontological positions, which translate into assumptions about what counts as science and whose science counts. In this theoretical paper we draw on decolonial and antiracist perspectives to examine these assumptions in light of the heterogeneous onto-epistemological and axiological values, cultural perspectives, and contributions of nondominant groups, and specifically of those who have been historically marginalized based on their gender, race, ethnic, age, and/or social class identity. Building on these arguments, we critique deficit-based approaches to science teaching, learning, and research, including those that focus on systemic injustice, yet leave intact dominant framings of the scientific enterprise, which are exclusionary and meritocratic. As an alternative, we offer a design of science teaching and learning for the pluriverse—“a world where many worlds fit”. This alternative allows us to reconstruct science and science-related “outcomes,” such as identity, in the service of cultural, epistemic, and linguistic pluralism. We close the paper with the idea that because mainstream theories reproduce deficit framings and educational injustices, we must engage with decolonial1 theories of pluriversality and discuss different onto-epistemologies to be able to grapple with existing social, racial, environmental injustices, and land-based devastations.  more » « less
Award ID(s):
2029956 1846167
NSF-PAR ID:
10342753
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley Publishing
Date Published:
Journal Name:
Science Education
Volume:
`06
Issue:
5
ISSN:
0036-8326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There have been many initiatives to improve the experiences of marginalized engineering students in order to increase their desire to pursue the field of engineering. However, despite these efforts, workforce numbers indicate lingering disparities. Representation in the science and engineering workforce is low with women comprising only 16% of those in science and engineering occupations in 2019, and underrepresented minorities (e.g., Black, Hispanic, and American Indian/Alaskan Native) collectively representing only approximately 20% (National Center for Science and Engineering Statistics [NCSES], 2022). Additionally, engineering has historically held cultural values that can exclude marginalized populations. Cech (2013) argues that engineering has supported a meritocratic ideology in which intelligence is something that you are born with rather than something you can gain. Engineering, she argues, is riddled with meritocratic regimens that include such common practices as grading on a curve and “weeding” out students in courses.Farrell et al. (2021) discuss how engineering culture is characterized by elitism through practices of epistemological dominance (devaluing other ways of knowing), majorism (placing higher value on STEM over the liberal arts), and technical social dualism (the belief that issues of diversity, equity, and inclusion should not be part of engineering). These ideologies can substantially affect the persistence of both women and people of color–populations historically excluded in engineering, because their concerns and/or cultural backgrounds are not validated by instructors or other peers which reproduces inequality. Improving student-faculty interactions through engineering professional development is one way to counteract these harmful cultural ideologies to positively impact and increase the participation of marginalized engineering students. STEM reform initiatives focused on faculty professional development, such as the NSF INCLUDES Aspire Alliance (Aspire), seek to prepare and educate faculty to integrate inclusive practices across their various campus roles and responsibilities as they relate to teaching, advising, research mentoring, collegiality, and leadership. The Aspire Summer Institute (ASI) has been one of Aspire’s most successful programs. The ASI is an intensive, week-long professional development event focused on educating institutional teams on the Inclusive Professional Framework (IPF) and how to integrate its components, individually and as teams, to improve STEM faculty inclusive behaviors. The IPF includes the domains of identity, intercultural awareness, and relational skill-building (Gillian-Daniel et al., 2021). Identity involves understanding not only your personal cultural identity but that of students and the impact of identity in learning spaces. Intercultural awareness involves instructors being able to navigate cultural interactions in a positive way as they consider the diverse backgrounds of students, while recognizing their own privileges and biases. Relational involves creating trusting relationships and a positive communication flow between instructors and students. The ASI and IPF can be used to advance a more inclusive environment for marginalized students in engineering. In this paper, we discuss the success of the ASI and how the institute and the IPF could be adapted specifically to support engineering faculty in their teaching, mentoring, and advising. 
    more » « less
  2. Most engineering ethics education is segregated into particular courses that, from a student’s perspective, can feel disconnected from the technical education at the center of their programs. In part because of this disconnect, several immersive programs designed to train engineering students in socio-technical systems thinking have emerged in the U.S. in the past two decades. One pedagogical goal of these programs is to provide alternative ideologies and practices that counter dominant cultural paradigms that marginalize macroethical thinking and social justice perspectives in engineering schools. In theory, longer-term immersion in such programs can help students overcome these harmful ideologies. However, because of the difficult nature of studying cultural change, very few studies have attempted to provide a thick description of how these alternative cultural practices are influencing student perspectives on engineering practices. Our study offers a rare glimpse at student uptake of these practices in a multi-year Science, Technology, and Society (STS) living-learning program. Our study explores whether and how cultural practices within an STS program help students develop and sustain the resources for using a socio-technical systems thinking approach to engineering practice. We grounded our work in a cultural practices framework from Nasir and Kirshner [1] which roughly understands practice to be “a patterned set of actions performed by members of a group based on common purposes and expectations, with shared cultural values, tools, and meanings” ([2, p. 99] as cited in [3]). Our descriptions of collective enactments of cultural practices are grounded in accounts of classroom events from researcher fieldnotes and reflections in student interviews. Looking across the enactment of practices in classrooms and students’ interpretations of these events in interviews allows us to describe the multiplicity of meanings that students distill from these activities. This paper will present on multiple cultural practices salient to students we have identified in this STS community, for example: cultivating an ethics of care, making the invisible visible, understanding systems from multiple perspectives, and empowering students to develop moral stances as citizens and scientists/engineers in society. Because of the complexity of the interplay between the scaffolding of the STS program’s pedagogy and the emergence of these four themes, we chose to center “cultivating an ethics of care” in this analysis and relationally explore the other three themes through it. Ethics of care manifests in two basic ways in the data. Students talk about how an ethics of care is part of the STS program community and how the STS program fosters the need for an ethics of care toward communities outside the classroom through human-centered engineering design. 
    more » « less
  3. This paper discusses the theoretical framework and curriculum materials that form the basis of the Investigative Science Learning Environment (ISLE) approach to learning and teaching physics. ISLE as a philosophical approach to learning, has two core intentionalities: 1. We want students to learn physics by thinking like physicists; by engaging in knowledge-generating activities that mimic the actual practices of physics and using the reasoning tools that physicists use when constructing and applying knowledge. 2. The way in which students learn physics should enhance their well-being. These intentionalities form the basis upon which we build a bricolage of multiple theoretical perspectives. We will show how the ISLE approach and its implementation is shaped by a. the epistemological commitments of physics, b. the findings of cognitive science, c. theories of learning communities, and d. the perspective of universal design. We will present both qualitative and quantitative data that demonstrate the effectiveness of ISLE in helping students to achieve our intentionalities. We conclude with a call to curriculum developers and implementers to explicitly articulate their intentionalities and theoretical perspectives so that we may forge deeper connections between educational theories, curriculum development, and implementation. 
    more » « less
  4. Student success in educational ecosystems is a primary goal of leadership efforts. Yet, power and privilege affect the racial, classist, and gendered implications of STEM education work in K-12 education as well as higher education. Interventions have been done at various levels, but despite the hard work of implementation, this has not resulted in dramatic improvements to STEM educational ecosystems or student engagement within them. Often, these implementations are done at the faculty/student level or institutional level but not at the departmental leadership level. The NSF-supported Eco-STEM Project proposes to establish a healthy educational ecosystem that supports all individuals (students, faculty, and staff) to thrive. Project activities are guided by ecosystem paradigm measures that support a culturally responsive learning/working environment; make teaching and learning rewarding and fulfilling; and emphasize community assets to enhance motivation, excellence, and success. For this work-in-progress paper, we describe the development of a leadership community of practice, comprised of department chairs of science and engineering departments, at [university name redacted], a large state-funded comprehensive majority minority master’s granting institution in the Southwest United States. In the year-long Leadership Community of Practice (L-CoP), the Fellows work on unpacking issues of power and privilege in their roles as STEM leaders and educators. During the Fall semester of 2022, the Fellows participated in four sessions. They engaged in readings, videos, active-learning activities, and critically reflective dialogues to facilitate discussion and reflection on identity, agency, the culture of power in STEM, and interventions and change in higher education. The L-CoP starts with Fellows reflecting on their social and professional identities and how their identities influence their teaching and leadership philosophies. Then Fellows are introduced to the framework of the culture of power in science--where they explore the social, cultural, and political impacts of preparing for a STEM college education. Finally, they explore theories and models of change for STEM higher education spaces. Through this curriculum, we aim to examine mental models to deconstruct notions that uphold the culture of power in science by instead building counternarratives with faculty and students in their departments. Through dialogues within the L-CoP, leaders discuss classroom/program climate, structure, and vibrancy to better support healthy educational ecosystems, as well as their participation in these systems. We are currently in the middle of our first implementation of the L-CoP. The first cohort consists of six L-CoP Fellows with highly diverse positionalities; there is racial, ethnic, and gender diversity, and all Fellows are full professors in the tenure line and chairs of their respective departments. We present details of the L-CoP, including the formation of the Fellow cohort, training of the facilitators, structure of the sessions, and initial results of our mid-program survey. The survey results provide insights into potential improvements to our tools and program. We also share some of the Fellows’ and facilitators’ reflections demonstrating a shift toward an ecosystem mindset. We prefer to present this work as a poster at the 2023 ASEE Annual Conference. 
    more » « less
  5. For some time, scholars who are guided by critical theories and perspectives have called out how white supremacist ideologies and systemic racism work to (re)produce societal inequities and educational injustices across science learning contexts in the United States. Given the sociopolitical nature of society, schooling, and science education, it is important to address the racist and settled history of scientific disciplines and science education. To this end, we take an antiracist stance on science teaching and learning and seek to disrupt forms of systemic racism in science classrooms. Since teachers do much of the daily work of transforming science education for minoritized learners, we advocate for preparing teachers who understand what it means to engage in antiracist, justice-oriented science teaching. In this article, we share our framework for supporting preservice teachers in understanding, developing, and implementing antiracist teaching dispositions and instructional practices. In alignment with other researchers in teacher education who emphasize the importance of anchoring teacher education practice and research in prominent educational theory, we highlight the theories undergirding our approach to antiracist science teaching. We offer considerations for how researchers and science teacher educators can use this framework to transform science teacher education. 
    more » « less