Interactions between the solid Earth and climate system represent a frontier area for geoscientific research that is strongly emphasized in the International Ocean Discovery Program (IODP) Science Plan. The continental margin of India adjoining the Arabian Sea offers a unique opportunity to understand tectonic-climatic interactions and the net impact of these on weathering and erosion of the Himalaya. Scientific drilling in the Arabian Sea is designed to understand the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. The southwest monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. Conversely, the tectonic evolution of the Himalaya, especially the exhumation of the Greater Himalaya, has been linked to intensification of the summer monsoon rains, as well as to plate tectonic forces. Weathering of the Himalaya has also been linked to long-term drawdown of atmospheric CO2 during the Cenozoic, culminating in the onset of Northern Hemisphere glaciation. No other part of the world has such intense links between tectonic and climatic processes. Unfortunately, these hypotheses remain largely untested because of limited information on the history of erosion and weatheringmore »
Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia
Rivers originating in High Mountain Asia are crucial lifelines for one-third of the world’s population. These fragile headwaters are now experiencing amplified climate change, glacier melt, and permafrost thaw. Observational data from 28 headwater basins demonstrate substantial increases in both annual runoff and annual sediment fluxes across the past six decades. The increases are accelerating from the mid-1990s in response to a warmer and wetter climate. The total sediment flux from High Mountain Asia is projected to more than double by 2050 under an extreme climate change scenario. These findings have far-reaching implications for the region’s hydropower, food, and environmental security.
- Award ID(s):
- 1831623
- Publication Date:
- NSF-PAR ID:
- 10342827
- Journal Name:
- Science
- Volume:
- 374
- Issue:
- 6567
- Page Range or eLocation-ID:
- 599 to 603
- ISSN:
- 0036-8075
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth, with its long-term development possibly linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. A major submarine fan probably draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indusmore »
-
The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites (U1456 and U1457) were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. Drilling and coring operations during Expedition 355 recovered sediment from Sites U1456 and U1457 in the Laxmi Basin, penetrating 1109.4 and 1108.6 m below seafloor (mbsf), respectively. Drilling reached sediment dated to 13.5–17.7 Ma (late early to early middle Miocene) at Site U1456, although with a large hiatus between the lowermost sediment and overlyingmore »
-
Introduction: The incidence of diarrhea, a leading cause of morbidity and mortality in low-income countries such as Nepal, is temperature-sensitive, suggesting it could be associated with climate change. With climate change fueled increases in the mean and variability of temperature and precipitation, the incidence of water and food-borne diseases are increasing, particularly in sub-Saharan Africa and South Asia. This national-level ecological study was undertaken to provide evidence linking weather and climate with diarrhea incidence in Nepal. Method: We analyzed monthly diarrheal disease count and meteorological data from all districts, spanning 15 eco-development regions of Nepal. Meteorological data and monthly data on diarrheal disease were sourced, respectively, from the Department of Hydrology and Meteorology and Health Management Information System (HMIS) of the Government of Nepal for the period from 2002 to 2014. Time-series log-linear regression models assessed the relationship between maximum temperature, minimum temperature, rainfall, relative humidity, and diarrhea burden. Predictors with p-values < 0.25 were retained in the fitted models. Results: Overall, diarrheal disease incidence in Nepal significantly increased with 1 °C increase in mean temperature (4.4%; 95% CI: 3.95, 4.85) and 1 cm increase in rainfall (0.28%; 95% CI: 0.15, 0.41). Seasonal variation of diarrheal incidence was prominent atmore »
-
Abstract Although currently exotic to New Zealand, the potential geographic distribution of Amblyomma americanum (L.), the lone star tick, was modelled using maximum entropy (MaxEnt). The MaxEnt model was calibrated across the native range of A. americanum in North America using present-day climatic conditions and occurrence data from museum collections. The resulting model was then projected onto New Zealand using both present-day and future climates modelled under two greenhouse gas emission scenarios, representative concentration pathways (RCP) 4.5 (low) and RCP 8.5 (high). Three sets of WorldClim bioclimatic variables were chosen using the jackknife method and tested in MaxEnt using different combinations of model feature class functions and regularization multiplier values. The preferred model was selected based on partial receiver operating characteristic tests, the omission rate and the lowest Akaike information criterion. The final model had four bioclimatic variables, Annual Mean Temperature (BIO 1 ), Annual Precipitation (BIO 12 ), Precipitation Seasonality (BIO 15 ) and Precipitation of Driest Quarter (BIO 17 ), and the projected New Zealand distribution was broadly similar to that of Haemaphysalis longicornis Neumann, New Zealand’s only livestock tick, but with a more extensive predicted suitability. The climate change predictions for the year 2050 under both lowmore »