skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drosophila female reproductive glands contribute to mating plug composition and the timing of sperm ejection
Reproductive traits that influence female remating and competitive fertilization rapidly evolve in response to sexual selection and sexual conflict. One such trait, observed across diverse animal taxa, is the formation of a structural plug inside the female reproductive tract (FRT), either during or shortly after mating. In Drosophila melanogaster , male seminal fluid forms a mating plug inside the female bursa, which has been demonstrated to influence sperm entry into storage and latency of female remating. Processing of the plug, including its eventual ejection from the female's reproductive tract, influences the competitive fertilization success of her mates and is mediated by female × male genotypic interactions. However, female contributions to plug formation and processing have received limited attention. Using developmental mutants that lack glandular FRT tissues, we reveal that these tissues are essential for mating plug ejection. We further use proteomics to demonstrate that female glandular proteins, and especially proteolytic enzymes, contribute to mating plug composition and have a widespread impact on plug formation and composition. Together, these phenotypic and molecular data identify female contributions to intersexual interactions that are a potential mechanism of post-copulatory sexual selection.  more » « less
Award ID(s):
1655840
PAR ID:
10342854
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1968
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Civetta, A (Ed.)
    Abstract Sexual reproduction in internally fertilizing species requires complex coordination between female and male reproductive systems and among the diverse tissues of the female reproductive tract (FRT). Here, we report a comprehensive, tissue-specific investigation of Drosophila melanogaster FRT gene expression before and after mating. We identified expression profiles that distinguished each tissue, including major differences between tissues with glandular or primarily nonglandular epithelium. All tissues were enriched for distinct sets of genes possessing secretion signals that exhibited accelerated evolution, as might be expected for genes participating in molecular interactions between the sexes within the FRT extracellular environment. Despite robust transcriptional differences between tissues, postmating responses were dominated by coordinated transient changes indicative of an integrated systems-level functional response. This comprehensive characterization of gene expression throughout the FRT identifies putative female contributions to postcopulatory events critical to reproduction and potentially reproductive isolation, as well as the putative targets of sexual selection and conflict. 
    more » « less
  2. Interactions between sperm and the female reproductive tract (FRT) are critical to reproductive success and yet are poorly understood. Because sperm complete their functional maturation within the FRT, the life history of sperm is likely to include a molecular “hand-off” from males to females. Although such intersexual molecular continuity is likely to be widespread among all internally fertilizing species, the identity and extent of female contributions are largely unknown. We combined semiquantitative proteomics with sex-specific isotopic labeling to catalog the posttesticular life history of the sperm proteome and determine the extent of molecular continuity between male and FRTs. We show that the Drosophila melanogaster sperm proteome undergoes substantial compositional changes after being transferred to the FRT. Multiple seminal fluid proteins initially associate with sperm, but most become undetectable after sperm are stored. Female-derived proteins also begin to associate with sperm immediately after mating, and they comprise nearly 20% of the postmating sperm proteome following 4 d of storage in the FRT. Female-derived proteins that associate with sperm are enriched for processes associated with energy metabolism, suggesting that female contributions support sperm viability during the prolonged period between copulation and fertilization. Our research provides a comprehensive characterization of sperm proteome dynamics and expands our understanding of the critical process of sperm–FRT interactions. 
    more » « less
  3. Synopsis The lower reproductive tract of female mammals has several competing functions including mating, tract health maintenance, and parturition. Diverse vaginal anatomy suggests interactions between natural and sexual selection, yet despite its importance, female copulatory morphology remains under-studied. We undertook a comparative study across the species-rich mammalian order Chiroptera (bats) with a focus on the suborder Yangochiroptera (Vespertilioniformes) to examine how female vaginal features may have coevolved with male penis morphology to minimize mechanical damage to their tissues during copulation. The penis morphology is diverse, presenting great potential for post-copulatory sexual selection and coevolution with the female morphology, but vaginas have not been carefully examined. Here we test the hypotheses that vaginal thickness and collagen density have coevolved with features of the male penis, including the presence of spines and a baculum. We present histological data from females of 24 species from 7 families of bats, and corresponding data on male penis anatomy. We also examine the role of phylogenetic history in the morphological patterns we observe. We found evidence that female vaginal thickness has coevolved with the presence of penile spines, but not with baculum presence or width. Collagen density did not appear to covary with male penile features. Our findings highlight the importance of considering interactions between the sexes in influencing functional reproductive structures and examine how these structures have been under selection in bats. 
    more » « less
  4. Abstract Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser‐known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm‐leucylaminopeptidases (S‐LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S‐LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male‐derived materials to females. 
    more » « less
  5. In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female’s reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multipleDrosophilaspecies revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time. 
    more » « less