Satellite imagery is being leveraged for many societally critical tasks across climate, economics, and public health. Yet, because of heterogeneity in landscapes (e.g. how a road looks in different places), models can show disparate performance across geographic areas. Given the important potential of disparities in algorithmic systems used in societal contexts, here we consider the risk of urban-rural disparities in identification of land-cover features. This is via semantic segmentation (a common computer vision task in which image regions are labelled according to what is being shown) which uses pre-trained image representations generated via contrastive self-supervised learning. We propose fair dense representation with contrastive learning (FairDCL) as a method for de-biasing the multi-level latent space of a convolution neural network. The method improves feature identification by removing spurious latent representations which are disparately distributed across urban and rural areas, and is achieved in an unsupervised way by contrastive pre-training. The pre-trained image representation mitigates downstream urban-rural prediction disparities and outperforms state-of-the-art baselines on real-world satellite images. Embedding space evaluation and ablation studies further demonstrate FairDCL’s robustness. As generalizability and robustness in geographic imagery is a nascent topic, our work motivates researchers to consider metrics beyond average accuracy in such applications.
more »
« less
Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning
We show that bringing intermediate layers' representations of two augmented versions of an image closer together in self-supervised learning helps to improve the momentum contrastive (MoCo) method. To this end, in addition to the contrastive loss, we minimize the mean squared error between the intermediate layer representations or make their cross-correlation matrix closer to an identity matrix. Both loss objectives either outperform standard MoCo, or achieve similar performances on three diverse medical imaging datasets: NIH-Chest Xrays, Breast Cancer Histopathology, and Diabetic Retinopathy. The gains of the improved MoCo are especially large in a low-labeled data regime (e.g. 1% labeled data) with an average gain of 5% across three datasets. We analyze the models trained using our novel approach via feature similarity analysis and layer-wise probing. Our analysis reveals that models trained via our approach have higher feature reuse compared to a standard MoCo and learn informative features earlier in the network. Finally, by comparing the output probability distribution of models fine-tuned on small versus large labeled data, we conclude that our proposed method of pre-training leads to lower Kolmogorov-Smirnov distance, as compared to a standard MoCo. This provides additional evidence that our proposed method learns more informative features in the pre-training phase which could be leveraged in a low-labeled data regime.
more »
« less
- Award ID(s):
- 1922658
- PAR ID:
- 10342927
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An increasingly popular machine learning paradigm is to pretrain a neural network (NN) on many tasks offline, then adapt it to downstream tasks, often by re-training only the last linear layer of the network. This approach yields strong downstream performance in a variety of contexts, demonstrating that multitask pretraining leads to effective feature learning. Although several recent theoretical studies have shown that shallow NNs learn meaningful features when either (i) they are trained on a single task or (ii) they are linear, very little is known about the closer-to-practice case of nonlinear NNs trained on multiple tasks. In this work, we present the first results proving that feature learning occurs during training with a nonlinear model on multiple tasks. Our key insight is that multi-task pretraining induces a pseudo-contrastive loss that favors representations that align points that typically have the same label across tasks. Using this observation, we show that when the tasks are binary classification tasks with labels depending on the projection of the data onto an r-dimensional subspace within the d k r-dimensional input space, a simple gradient-based multitask learning algorithm on a two-layer ReLU NN recovers this projection, allowing for generalization to downstream tasks with sample and neuron complexity independent of d. In contrast, we show that with high probability over the draw of a single task, training on this single task cannot guarantee to learn all r ground-truth features.more » « less
-
An increasingly popular machine learning paradigm is to pretrain a neural network (NN) on many tasks offline, then adapt it to downstream tasks, often by re-training only the last linear layer of the network. This approach yields strong downstream performance in a variety of contexts, demonstrating that multitask pretraining leads to effective feature learning. Although several recent theoretical studies have shown that shallow NNs learn meaningful features when either (i) they are trained on a single task or (ii) they are linear, very little is known about the closer-to-practice case of nonlinear NNs trained on multiple tasks. In this work, we present the first results proving that feature learning occurs during training with a nonlinear model on multiple tasks. Our key insight is that multi-task pretraining induces a pseudo-contrastive loss that favors representations that align points that typically have the same label across tasks. Using this observation, we show that when the tasks are binary classification tasks with labels depending on the projection of the data onto an 𝑟-dimensional subspace within the 𝑑 ≫𝑟-dimensional input space, a simple gradient-based multitask learning algorithm on a two-layer ReLU NN recovers this projection, allowing for generalization to downstream tasks with sample and neuron complexity independent of 𝑑. In contrast, we show that with high probability over the draw of a single task, training on this single task cannot guarantee to learn all 𝑟 ground-truth features.more » « less
-
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions.In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.more » « less
-
Despite the substantial success of deep learning for modulation classification, models trained on a specific transmitter configuration and channel model often fail to generalize well to other scenarios with different transmitter configurations, wireless fading channels, or receiver impairments such as clock offset. This paper proposes Contrastive Learning with Self- Reconstruction called CLSR-AMC to learn good representations of signals resilient to channel changes. While contrastive loss focuses on the differences between individual modulations, the reconstruction loss captures representative features of the signal. Additionally, we develop three data augmentation operators to emulate the impact of channel and hardware impairments without exhaustive modeling of different channel profiles. We perform extensive experimentation with commonly used datasets. We show that CLSR-AMC outperforms its counterpart based on contrastive learning for the same amount of labeled data by significant average accuracy gains of 24.29%, 17.01%, and 15.97% in Additive White Gaussian Noise (AWGN), Rayleigh+AWGN, and Rician+AWGN channels, respectively.more » « less
An official website of the United States government

