skip to main content


Title: Convergence of online k-means
We prove asymptotic convergence for a general class of k-means algorithms performed over streaming data from a distribution— the centers asymptotically converge to the set of stationary points of the k-means objective function. To do so, we show that online k-means over a distribution can be interpreted as stochastic gradient descent with a stochastic learning rate schedule. Then, we prove convergence by extending techniques used in optimization literature to handle settings where center-specific learning rates may depend on the past trajectory of the centers.  more » « less
Award ID(s):
1813160
NSF-PAR ID:
10343008
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics
Volume:
151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyze online (Bottou & Bengio, 1994) and mini-batch (Sculley, 2010) k-means variants. Both scale up the widely used Lloyd’s algorithm via stochastic approximation, and have become popular for large-scale clustering and unsupervised feature learning. We show, for the first time, that they have global convergence towards “local optima” at rate O(1/t) under general conditions. In addition, we show that if the dataset is clusterable, stochastic k-means with suitable initialization converges to an optimal k-means solution at rate O(1/t) with high probability. The k-means objective is non-convex and non-differentiable; we exploit ideas from non-convex gradient-based optimization by providing a novel characterization of the trajectory of the k-means algorithm on its solution space, and circumvent its non-differentiability via geometric insights about the k-means update. 
    more » « less
  2. Data parallel frameworks become essential for training machine learning models. The classic Bulk Synchronous Parallel (BSP) model updates the model parameters through pre-defined synchronization barriers. However, when a worker computes significantly slower than other workers, waiting for the slow worker will lead to excessive waste of computing resources. In this paper, we propose a novel proactive data-parallel (PDP) framework. PDP enables the parameter server to initiate the update of the model parameter. That is, we can perform the update at any time without pre-defined update points. PDP not only initiates the update but also determines when to update. The global decision on the frequency of updates will accelerate the training. We further propose asynchronous PDP to reduce the idle time caused by synchronizing parameter updates. We theoretically prove the convergence property of asynchronous PDP. We implement a distributed PDP framework and evaluate PDP with several popular machine learning algorithms including Multilayer Perceptron, Convolutional Neural Network, K-means, and Gaussian Mixture Model. Our evaluation shows that PDP can achieve up to 20X speedup over the BSP model and scale to large clusters. 
    more » « less
  3. null (Ed.)
    In performative prediction, the choice of a model influences the distribution of future data, typically through actions taken based on the model's predictions. We initiate the study of stochastic optimization for performative prediction. What sets this setting apart from traditional stochastic optimization is the difference between merely updating model parameters and deploying the new model. The latter triggers a shift in the distribution that affects future data, while the former keeps the distribution as is. Assuming smoothness and strong convexity, we prove rates of convergence for both greedily deploying models after each stochastic update (greedy deploy) as well as for taking several updates before redeploying (lazy deploy). In both cases, our bounds smoothly recover the optimal O(1/k) rate as the strength of performativity decreases. Furthermore, they illustrate how depending on the strength of performative effects, there exists a regime where either approach outperforms the other. We experimentally explore the trade-off on both synthetic data and a strategic classification simulator. 
    more » « less
  4. Inference-based optimization via simulation, which substitutes Gaussian process (GP) learning for the structural properties exploited in mathematical programming, is a powerful paradigm that has been shown to be remarkably effective in problems of modest feasible-region size and decision-variable dimension. The limitation to “modest” problems is a result of the computational overhead and numerical challenges encountered in computing the GP conditional (posterior) distribution on each iteration. In this paper, we substantially expand the size of discrete-decision-variable optimization-via-simulation problems that can be attacked in this way by exploiting a particular GP—discrete Gaussian Markov random fields—and carefully tailored computational methods. The result is the rapid Gaussian Markov Improvement Algorithm (rGMIA), an algorithm that delivers both a global convergence guarantee and finite-sample optimality-gap inference for significantly larger problems. Between infrequent evaluations of the global conditional distribution, rGMIA applies the full power of GP learning to rapidly search smaller sets of promising feasible solutions that need not be spatially close. We carefully document the computational savings via complexity analysis and an extensive empirical study. Summary of Contribution: The broad topic of the paper is optimization via simulation, which means optimizing some performance measure of a system that may only be estimated by executing a stochastic, discrete-event simulation. Stochastic simulation is a core topic and method of operations research. The focus of this paper is on significantly speeding-up the computations underlying an existing method that is based on Gaussian process learning, where the underlying Gaussian process is a discrete Gaussian Markov Random Field. This speed-up is accomplished by employing smart computational linear algebra, state-of-the-art algorithms, and a careful divide-and-conquer evaluation strategy. Problems of significantly greater size than any other existing algorithm with similar guarantees can solve are solved as illustrations. 
    more » « less
  5. We propose a novel adaptive empirical Bayesian (AEB) method for sparse deep learning, where the sparsity is ensured via a class of self-adaptive spike-and-slab priors. The proposed method works by alternatively sampling from an adaptive hierarchical posterior distribution using stochastic gradient Markov Chain Monte Carlo (MCMC) and smoothly optimizing the hyperparameters using stochastic approximation (SA). We further prove the convergence of the proposed method to the asymptotically correct distribution under mild conditions. Empirical applications of the proposed method lead to the state-of-the-art performance on MNIST and Fashion MNIST with shallow convolutional neural networks (CNN) and the state-of-the-art compression performance on CIFAR10 with Residual Networks. The proposed method also improves resistance to adversarial attacks. 
    more » « less