skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit
The quartz crystal microbalance (QCM) has been widely used in laboratory settings as an analytical tool for recognizing and discriminating biological and chemical molecules of interest. As a result, recent studies have shown there to be considerable attention in practical applications of the QCM technique beyond the laboratory. However, most commercial QCM instruments are not suitable for off-laboratory usage. For field-deployable applications and in situ detection, the development of a portable QCM measurement system achieving comparable performance to benchtop instruments is highly desired. In this paper, we describe the development of a fully customizable, miniaturized, battery-powered, and cost-efficient QCM system employing a phase-locked loop (PLL) electronic circuit-based QCM measurement system. The performance of this developed system showed a minimum frequency resolution of approximately 0.22 Hz at 0.1 s measurement time. This novel, miniaturized system successfully demonstrated an ability to detect two common volatile organic compounds (VOCs), methanol and dichloromethane (DCM), and the obtained results were comparable to responses from a commercially available benchtop instrument.  more » « less
Award ID(s):
1905105
PAR ID:
10343094
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Electronics
Volume:
11
Issue:
3
ISSN:
2079-9292
Page Range / eLocation ID:
358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A potentiostat is an analytical device and a crucial component in electrochemical instruments used for studying chemical reaction mechanisms, with potential applications in early diagnosis of disease or critical health conditions. Conventional potentiostats are typically benchtop devices designed for laboratory use, whereas a wearable potentiostat can be interfaced with biochemical sensors for disease diagnostics at home. This work presents a low-power potentiostat designed to connect with a sensor array consisting of eight to ten working electrodes. The potentiostat is capable of running Electrochemical Impedance Spectroscopy and Cyclic Voltammetry. The system is powered by lithium-ion batteries and uses Bluetooth for data transmission to the user. A single ARM M4 microcontroller, integrated with a Bluetooth low-energy radio module, controls the entire system. The accuracy, reliability, and power efficiency of the potentiostat were evaluated and compared against existing commercial benchtop potentiostats. Additionally, we have outlined future steps to enhance circuit miniaturization and power efficiency, aiming to develop fully integrated wearable sensing devices comparable in size to a wristwatch. 
    more » « less
  2. Abstract Viscosity measurement has recently captured considerable attention due to its wide range of applications in fields such as pharmacy, food industry, cosmetic industry, and biomedical diagnostics. Acoustic wave sensors such as quartz crystal microbalance (QCM) are well-known mass sensors that also show their capability in measuring liquid viscosity. However, the challenges for QCM-based viscosity measurement devices lie in their low sensitivity and unstable response. Herein, we report an ultrasensitive micropillar-enabled acoustic wave (μPAW) viscometer by fabricating well-defined polymethyl methacrylate (PMMA) micropillars on a QCM substrate to achieve ultrahigh sensitivity for liquid viscosity with a stable response thanks to a unique vibration coupling between the micropillar and QCM substrate. The μPAW based viscometer shows a 20-fold improvement in the measurement sensitivity over traditional QCM viscometers and achieved an excellent limit of detection (LOD) while measuring the viscosity of sucrose liquid as low as 0.054 wt%. The microdevice developed in this work is a promising tool for the viscosity measurement of liquids. 
    more » « less
  3. This paper presents the development and characterization of a miniaturized RF sensor designed for temperature sensing applications, leveraging advanced additive manufacturing techniques. The sensor utilizes NiTiNOL, a superelastic alloy, as the temperature-sensing material, integrated into a split-box resonator structure. The resonator operates at a frequency of 38.125 GHz, and the design benefits from the flexibility and precision offered by 3D printing technology. This approach allows for a compact form factor and robust performance in harsh environments. The sensor's performance was evaluated through a series of simulations, demonstrating high sensitivity and reliability in temperature measurement. The results highlight the potential of additively manufactured RF sensors in various industrial, medical, and environmental monitoring applications, offering advantages such as reduced size, weight, and power consumption, along with enhanced mechanical robustness and thermal stability. This work underscores the significance of additive manufacturing in advancing next-generation sensor technologies. 
    more » « less
  4. Real-time, all-electronic control of non-Newtonian fluid flow through a microscale channel is crucial for various applications in manufacturing and healthcare. However, existing methods lack the sensitivity required for accurate measurement and the real-time responsiveness necessary for effective adjustment. Here, we demonstrate an all-electronic system that enables closed-loop, real-time, high-sensitivity control of various waveforms of non-Newtonian fluid flow (0.76 μl min−1) through a micro-sized outlet. Our approach combines a contactless, cuff-like flow sensor with a neural-network control program. This system offers a simple, miniaturized, versatile, yet high-performance solution for non-Newtonian fluid flow control, easily integrated into existing setups. 
    more » « less
  5. Metasurfaces have been studied and widely applied to optical systems. A metasurface-based flat lens (metalens) holds promise in wave-front engineering for multiple applications. The metalens has become a breakthrough technology for miniaturized optical system development, due to its outstanding characteristics, such as ultrathinness and cost-effectiveness. Compared to conventional macro- or meso-scale optics manufacturing methods, the micro-machining process for metalenses is relatively straightforward and more suitable for mass production. Due to their remarkable abilities and superior optical performance, metalenses in refractive or diffractive mode could potentially replace traditional optics. In this review, we give a brief overview of the most recent studies on metalenses and their applications with a specific focus on miniaturized optical imaging and sensing systems. We discuss approaches for overcoming technical challenges in the bio-optics field, including a large field of view (FOV), chromatic aberration, and high-resolution imaging. 
    more » « less