skip to main content


Title: Competition of Several Energy-Transport Initiation Mechanisms Defines the Ballistic Transport Speed
Award ID(s):
1900568
NSF-PAR ID:
10409537
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
125
Issue:
27
ISSN:
1520-6106
Page Range / eLocation ID:
p. 7546-7555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding multi-component transport through polymer membranes is critical for separation applications such as water purification, energy devices, etc. Specifically for CO2 reduction cells, where the CO2 reduction products (alcohols and carboxylate salts), crossover of these species is undesirable and improving the design of ion exchange membranes to prevent this behavior is needed. Previously, it was observed that acetate transport increased in copermeation with alcohols for cation exchange membranes consisting of poly(ethylene glycol) diacrylate (PEGDA) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and that the inclusion of poly(ethylene glycol) methacrylate (PEGMA) (n = 5, n represents the number of ethylene oxide repeat units) could suppress this behavior. Here, we further investigate the role of PEGMA in modulating fractional free volume and transport behavior of alcohols and carboxylates. PEGDA-PEGMA membranes of varied membranes are fabricated with both varied pre −polymerization water content at constant PEGMA (n = 9) content and varied PEGMA content at two pre −polymerization water contents (20 and 60 wt.% water). Permeability to sodium acetate also decreases in these charge-neutral PEGDA-PEGMA membranes compared to PEGMA-free films. Therefore, incorporation of comonomers such as PEGMA with long side chains may provide a useful membrane chemistry structural motif for preventing undesirable carboxylate crossover in polymer membranes. 
    more » « less
  2. Abstract Accurate representation of stratospheric trace gas transport is important for ozone modeling and climate projection. Intermodel spread can arise from differences in the representation of transport by the diabatic (overturning) circulation vs. comparatively faster adiabatic mixing by breaking waves, or through numerical errors, primarily diffusion. This study investigates the impact of these processes on transport using an idealised tracer, the age-of-air. Transport is assessed in two state-of-the-art dynamical cores based on fundamentally different numerical formulations: finite volume and spectral element. Integrating the models in free-running and nudged tropical wind configurations reveals the crucial impact of tropical dynamics on stratospheric transport. Using age-budget theory, vertical and horizontal gradients of age allow comparison of the roles of the diabatic circulation, adiabatic mixing, and the numerical diffusive flux. Their respective contribution is quantified by connecting the full 3-d model to the tropical leaky pipe framework of Neu and Plumb (1999). Transport by the two cores varies significantly in the free-running integrations, with the age in the middle stratosphere differing by about 2 years primarily due to differences in adiabatic mixing. When winds in the tropics are constrained, the difference in age drops to about 0.5 years; in this configuration, more than half the difference is due to the representation of the diabatic circulation. Numerical diffusion is very sensitive to the resolution of the core, but does not play a significant role in differences between the cores when they are run at comparable resolution. It is concluded that fundamental differences rooted in dynamical core formulation can account for a substantial fraction of transport bias between climate models. 
    more » « less