skip to main content

Title: Studying the Inflammatory Responses to Amyloid Beta Oligomers in Brain-Specific Pericyte and Endothelial Co-Culture From Human Stem Cells
Background: Recently, the in vitro blood–brain barrier (BBB) models derived from human pluripotent stem cells have been given extensive attention in therapeutics due to the implications they have with the health of the central nervous system. It is essential to create an accurate BBB model in vitro in order to better understand the properties of the BBB, and how it can respond to inflammatory stimulation and be passed by targeted or non-targeted cell therapeutics, more specifically extracellular vesicles. Methods: Brain-specific pericytes (iPCs) were differentiated from iPSK3 cells using dual SMAD signaling inhibitors and Wnt activation plus fibroblast growth factor 2 (FGF-2). The derived cells were characterized by immunostaining, flow cytometry, and RT-PCR. In parallel, blood vessels organoids were derived using Wnt activation, BMP4, FGF2, VEGF, and SB431542. The organoids were replated and treated with retinoic acid to enhance the blood–brain barrier (BBB) features in the differentiated brain endothelial cells (iECs). Co-culture was performed for iPCs and iECs in the transwell system and 3D microfluidics channels. Results: The derived iPCs expressed common markers PDGFRb and NG2, and brain-specific genes FOXF2 , ABCC9 , KCNJ8 , and ZIC1 . The derived iECs expressed common endothelial cell markers CD31, VE-cadherin, and BBB-associated genes BRCP , GLUT-1 , PGP , ABCC1 , OCLN , and SLC2A1 . The co-culture of the two cell types responded to the stimulation of amyloid β42 oligomers by the upregulation of the expression of TNFa , IL6 , NFKB , Casp3 , SOD2 , and TP53 . The co-culture also showed the property of trans-endothelial electrical resistance. The proof of concept vascularization strategy was demonstrated in a 3D microfluidics-based device. Conclusion: The derived iPCs and iECs have brain-specific properties, and the co-culture of iPCs and iECs provides an in vitro BBB model that show inflammatory response. This study has significance in establishing micro-physiological systems for neurological disease modeling and drug screening.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Chemical Engineering
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood–CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10–15, bone morphogenetic protein 4 was added along with (+/−) CHIR99021 (CHIR, a small molecule GSK-3β inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the −CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2–4-fold), DCN (~7-fold), DLK1 (2–4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2–0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the −CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer’s disease and ischemic stroke. 
    more » « less
  2. Abstract

    In vitro culture models of the blood‐brain barrier (BBB) provide a useful platform to test the mechanisms of cellular infiltration and pathogen dissemination into the central nervous system (CNS). We present an in vitro mouse model of the BBB to testMycobacterium tuberculosis(Mtb) dissemination across brain endothelial cells. One‐third of the global population is infected with Mtb, and in 1%‐2% of cases bacteria invade the CNS through a largely unknown process. The “Trojan horse” theory supports the role of a cellular carrier that engulfs bacteria and carries them to the brain without being recognized. We present for the first time a protocol for an in vitro BBB‐granuloma model that supports the Trojan horse mechanism of Mtb dissemination into the CNS. Handling of bacterial cultures, in vivo and in vitro infections, isolation of primary astroglial and endothelial cells, and assembly of the in vitro BBB model is presented. These techniques can be used to analyze the interaction of adaptive and innate immune system cells with brain endothelial cells, cellular transmigration, BBB morphological and functional changes, and methods of bacterial dissemination. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Isolation of primary mouse brain astrocytes and endothelial cells

    Basic Protocol 2: Isolation of primary mouse bone marrow–derived dendritic cells

    Support Protocol 1: Validation of dendritic cell purity by flow cytometry

    Basic Protocol 3: Isolation of primary mouse peripheral blood mononuclear cells

    Support Protocol 2: Isolation of primary mouse spleen cells

    Support Protocol 3: Purification and validation of CD4+ T cells from PBMCs and spleen cells

    Basic Protocol 4: Isolation of liver granuloma supernatant and determination of organ load

    Support Protocol 4: In vivo and in vitro infection with mycobacteria

    Basic Protocol 5: Assembly of the BBB co‐culture model

    Basic Protocol 6: Assembly of the combined in vitro granuloma and BBB model

    more » « less
  3. Abstract

    The brain vasculature maintains brain homeostasis by tightly regulating ionic, molecular, and cellular transport between the blood and the brain parenchyma. These blood–brain barrier (BBB) properties are impediments to brain drug delivery, and brain vascular dysfunction accompanies many neurological disorders. The molecular constituents of brain microvascular endothelial cells (BMECs) and pericytes, which share a basement membrane and comprise the microvessel structure, remain incompletely characterized, particularly in humans. To improve the molecular database of these cell types, we performed RNA sequencing on brain microvessel preparations isolated from snap-frozen human and mouse tissues by laser capture microdissection (LCM). The resulting transcriptome datasets from LCM microvessels were enriched in known brain endothelial and pericyte markers, and global comparison identified previously unknown microvessel-enriched genes. We used these datasets to identify mouse-human species differences in microvessel-associated gene expression that may have relevance to BBB regulation and drug delivery. Further, by comparison of human LCM microvessel data with existing human BMEC transcriptomic datasets, we identified novel putative markers of human brain pericytes. Together, these data improve the molecular definition of BMECs and brain pericytes, and are a resource for rational development of new brain-penetrant therapeutics and for advancing understanding of brain vascular function and dysfunction.

    more » « less
  4. Abstract  
    more » « less
  5. The blood-brain barrier (BBB) is a dynamic component of the brain-vascular interface that maintains brain homeostasis and regulates solute permeability into brain tissue. The expression of tight junction proteins between adjacent endothelial cells and the presence of efflux proteins prevents entry of foreign substances into the brain parenchyma. BBB dysfunction, however, is evident in many neurological disorders including ischemic stroke, trauma, and chronic neurodegenerative diseases. Currently, major contributors to BBB dysfunction are not well understood. Here, we employed a multicellular 3D neurovascular unit organoid containing human brain microvascular endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons to model the effects of hypoxia and neuroinflammation on BBB function. Organoids were cultured in hypoxic chamber with 0.1% O2 for 24 hours. Organoids cultured under this hypoxic condition showed increased permeability, pro-inflammatory cytokine production, and increased oxidative stress. The anti-inflammatory agents, secoisolariciresinol diglucoside and 2-arachidonoyl glycerol, demonstrated protection by reducing inflammatory cytokine levels in the organoids under hypoxic conditions. Through the assessment of a free radical scavenger and an anti-inflammatory endocannabinoid, we hereby report the utility of the model in drug development for drug candidates that may reduce the effects of ROS and inflammation under disease conditions. This 3D organoid model recapitulates characteristics of BBB dysfunction under hypoxic physiological conditions and when exposed to exogenous neuroinflammatory mediators and hence may have potential in disease modeling and therapeutic development. 
    more » « less