skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Studying the Inflammatory Responses to Amyloid Beta Oligomers in Brain-Specific Pericyte and Endothelial Co-Culture From Human Stem Cells
Background: Recently, the in vitro blood–brain barrier (BBB) models derived from human pluripotent stem cells have been given extensive attention in therapeutics due to the implications they have with the health of the central nervous system. It is essential to create an accurate BBB model in vitro in order to better understand the properties of the BBB, and how it can respond to inflammatory stimulation and be passed by targeted or non-targeted cell therapeutics, more specifically extracellular vesicles. Methods: Brain-specific pericytes (iPCs) were differentiated from iPSK3 cells using dual SMAD signaling inhibitors and Wnt activation plus fibroblast growth factor 2 (FGF-2). The derived cells were characterized by immunostaining, flow cytometry, and RT-PCR. In parallel, blood vessels organoids were derived using Wnt activation, BMP4, FGF2, VEGF, and SB431542. The organoids were replated and treated with retinoic acid to enhance the blood–brain barrier (BBB) features in the differentiated brain endothelial cells (iECs). Co-culture was performed for iPCs and iECs in the transwell system and 3D microfluidics channels. Results: The derived iPCs expressed common markers PDGFRb and NG2, and brain-specific genes FOXF2 , ABCC9 , KCNJ8 , and ZIC1 . The derived iECs expressed common endothelial cell markers CD31, VE-cadherin, and BBB-associated genes BRCP , GLUT-1 , PGP , ABCC1 , OCLN , and SLC2A1 . The co-culture of the two cell types responded to the stimulation of amyloid β42 oligomers by the upregulation of the expression of TNFa , IL6 , NFKB , Casp3 , SOD2 , and TP53 . The co-culture also showed the property of trans-endothelial electrical resistance. The proof of concept vascularization strategy was demonstrated in a 3D microfluidics-based device. Conclusion: The derived iPCs and iECs have brain-specific properties, and the co-culture of iPCs and iECs provides an in vitro BBB model that show inflammatory response. This study has significance in establishing micro-physiological systems for neurological disease modeling and drug screening.  more » « less
Award ID(s):
1917618
PAR ID:
10343322
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Chemical Engineering
Volume:
4
ISSN:
2673-2718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The blood-brain barrier (BBB) is a dynamic component of the brain-vascular interface that maintains brain homeostasis and regulates solute permeability into brain tissue. The expression of tight junction proteins between adjacent endothelial cells and the presence of efflux proteins prevents entry of foreign substances into the brain parenchyma. BBB dysfunction, however, is evident in many neurological disorders including ischemic stroke, trauma, and chronic neurodegenerative diseases. Currently, major contributors to BBB dysfunction are not well understood. Here, we employed a multicellular 3D neurovascular unit organoid containing human brain microvascular endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons to model the effects of hypoxia and neuroinflammation on BBB function. Organoids were cultured in hypoxic chamber with 0.1% O2 for 24 hours. Organoids cultured under this hypoxic condition showed increased permeability, pro-inflammatory cytokine production, and increased oxidative stress. The anti-inflammatory agents, secoisolariciresinol diglucoside and 2-arachidonoyl glycerol, demonstrated protection by reducing inflammatory cytokine levels in the organoids under hypoxic conditions. Through the assessment of a free radical scavenger and an anti-inflammatory endocannabinoid, we hereby report the utility of the model in drug development for drug candidates that may reduce the effects of ROS and inflammation under disease conditions. This 3D organoid model recapitulates characteristics of BBB dysfunction under hypoxic physiological conditions and when exposed to exogenous neuroinflammatory mediators and hence may have potential in disease modeling and therapeutic development. 
    more » « less
  2. The blood–brain barrier (BBB) is a vital structure for maintaining homeostasis between the blood and the brain in the central nervous system (CNS). Biomolecule exchange, ion balance, nutrition delivery, and toxic molecule prevention rely on the normal function of the BBB. The dysfunction and the dysregulation of the BBB leads to the progression of neurological disorders and neurodegeneration. Therefore, in vitro BBB models can facilitate the investigation for proper therapies. As the demand increases, it is urgent to develop a more efficient and more physiologically relevant BBB model. In this review, the development of the microfluidics platform for the applications in neuroscience is summarized. This article focuses on the characterizations of in vitro BBB models derived from human stem cells and discusses the development of various types of in vitro models. The microfluidics-based system and BBB-on-chip models should provide a better platform for high-throughput drug-screening and targeted delivery. 
    more » « less
  3. Abstract The brain vasculature maintains brain homeostasis by tightly regulating ionic, molecular, and cellular transport between the blood and the brain parenchyma. These blood–brain barrier (BBB) properties are impediments to brain drug delivery, and brain vascular dysfunction accompanies many neurological disorders. The molecular constituents of brain microvascular endothelial cells (BMECs) and pericytes, which share a basement membrane and comprise the microvessel structure, remain incompletely characterized, particularly in humans. To improve the molecular database of these cell types, we performed RNA sequencing on brain microvessel preparations isolated from snap-frozen human and mouse tissues by laser capture microdissection (LCM). The resulting transcriptome datasets from LCM microvessels were enriched in known brain endothelial and pericyte markers, and global comparison identified previously unknown microvessel-enriched genes. We used these datasets to identify mouse-human species differences in microvessel-associated gene expression that may have relevance to BBB regulation and drug delivery. Further, by comparison of human LCM microvessel data with existing human BMEC transcriptomic datasets, we identified novel putative markers of human brain pericytes. Together, these data improve the molecular definition of BMECs and brain pericytes, and are a resource for rational development of new brain-penetrant therapeutics and for advancing understanding of brain vascular function and dysfunction. 
    more » « less
  4. The blood-brain barrier (BBB) is a dynamic interface that regulates the molecular exchanges between the brain and peripheral blood. The permeability of the BBB is primarily regulated by the junction proteins on the brain endothelial cells. In vitro BBB models have shown great potential for the investigation of the mechanisms of physiological function, pathologies, and drug delivery in the brain. However, few studies have demonstrated the ability to monitor and evaluate the barrier integrity by quantitatively analyzing the junction presentation in 3D microvessels. This study aimed to fabricate a simple vessel-on-chip, which allows for a rigorous quantitative investigation of junction presentation in 3D microvessels. To this end, we developed a rapid protocol that creates 3D microvessels with polydimethylsiloxane and microneedles. We established a simple vessel-on-chip model lined with human iPSC-derived brain microvascular endothelial-like cells (iBMEC-like cells). The 3D image of the vessel structure can then be “unwrapped” and converted to 2D images for quantitative analysis of cell–cell junction phenotypes. Our findings revealed that 3D cylindrical structures altered the phenotype of tight junction proteins, along with the morphology of cells. Additionally, the cell–cell junction integrity in our 3D models was disrupted by the tumor necrosis factor α. This work presents a “quick and easy” 3D vessel-on-chip model and analysis pipeline, together allowing for the capability of screening and evaluating the cell–cell junction integrity of endothelial cells under various microenvironment conditions and treatments. 
    more » « less
  5. Abstract It is increasingly recognized that brain microvascular endothelial cells (BMECs), the principal component of the blood‐brain barrier (BBB), are highly sensitive to soluble cues from both the bloodstream and the brain. This concept extends in vitro, where the extracellular milieu can also influence BBB properties in cultured cells. However, the extent to which baseline culture conditions can affect BBB properties in vitro remains unclear, which has implications for model variability and reproducibility, as well as downstream assessments of molecular transport and disease phenotypes. Here, we explore this concept by examining BBB properties within human‐induced pluripotent stem cell (iPSC)‐derived BMEC‐like cells cultured under serum‐free conditions in DMEM/F12 and Neurobasal media, which have fully defined compositions. We demonstrate notable differences in both passive and active BBB properties as a function of basal media composition. Further, RNA sequencing and phosphoproteome analyses revealed alterations to various signaling pathways in response to basal media differences. Overall, our results demonstrate that baseline culture conditions can have a profound influence on the performance of in vitro BBB models, and these effects should be considered when designing experiments that utilize such models for basic research and preclinical assays. image 
    more » « less