skip to main content


Title: Neurological Assessment Using a Physical-Virtual Patient (PVP)
Background. Simulation has revolutionized teaching and learning. However, traditional manikins are limited in their ability to exhibit emotions, movements, and interactive eye gaze. As a result, students struggle with immersion and may be unable to authentically relate to the patient. Intervention. We developed a new type of patient simulator called the Physical-Virtual Patients (PVP) which combines the physicality of manikins with the richness of dynamic visuals. The PVP uses spatial Augmented Reality to rear project dynamic imagery (e.g., facial expressions, ptosis, pupil reactions) on a semi-transparent physical shell. The shell occupies space and matches the dimensions of a human head. Methods. We compared two groups of third semester nursing students (N=59) from a baccalaureate program using a between-participant design, one group interacting with a traditional high-fidelity manikin versus a more realistic PVP head. The learners had to perform a neurological assessment. We measured authenticity, urgency, and learning. Results. Learners had a more realistic encounter with the PVP patient (p=0.046), they were more engaged with the PVP condition compared to the manikin in terms of authenticity of encounter and cognitive strategies. The PVP provoked a higher sense of urgency (p=0.002). There was increased learning for the PVP group compared to the manikin group on the pre and post-simulation scores (p=0.027). Conclusion. The realism of the visuals in the PVP increases authenticity and engagement which results in a greater sense of urgency and overall learning.  more » « less
Award ID(s):
1800961
NSF-PAR ID:
10343463
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Simulation & Gaming
Volume:
51
Issue:
6
ISSN:
1046-8781
Page Range / eLocation ID:
802 to 818
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Increasingly, college science courses are transitioning from a traditional lecture format to active learning because students learn more and fail less frequently when they engage in their learning through activities and discussions in class. Fear of negative evaluation (FNE), defined as a student’s sense of dread associated with being unfavorably evaluated while participating in a social situation, discourages undergraduates from participating in small group discussions, whole class discussions, and conversing one-on-one with instructors.

    Objective

    This study aims to evaluate the acceptability of a novel digital single-session intervention and to assess the feasibility of implementing it in a large enrollment college science course taught in an active learning way.

    Methods

    To equip undergraduates with skills to cope with FNE and bolster their confidence, clinical psychologists and biology education researchers developed Project Engage, a digital, self-guided single-session intervention for college students. It teaches students strategies for coping with FNE to bolster their confidence. Project Engage provides biologically informed psychoeducation, uses interactive elements for engagement, and helps generate a personalized action plan. We conducted a 2-armed randomized controlled trial to evaluate the acceptability and the preliminary effectiveness of Project Engage compared with an active control condition that provides information on available resources on the college campus.

    Results

    In a study of 282 upper-level physiology students, participants randomized to complete Project Engage reported a greater increase in overall confidence in engaging in small group discussions (P=.01) and whole class discussions (P<.001), but not in one-on-one interactions with instructors (P=.05), from baseline to immediately after intervention outcomes, compared with participants in an active control condition. Project Engage received a good acceptability rating (1.22 on a scale of –2 to +2) and had a high completion rate (>97%).

    Conclusions

    This study provides a foundation for a freely available, easily accessible intervention to bolster student confidence for contributing in class.

    Trial Registration

    OSF Registries osf.io/4ca68 http://osf.io/4ca68

     
    more » « less
  2. null (Ed.)
    Two methods of assessing senior chemical engineering student ethical decision making in a process safety context were developed; the case-study-based Engineering Process Safety Reasoning Instrument (EPSRI) and a digital immersive environment entitled Contents Under Pressure. Both interventions had similar ethical and process safety decision prompts, but were presented in different manners; the EPSRI as a traditional electronic survey, and Contents Under Pressure as a digital immersive environment (“game”). 148 chemical engineering seniors at three institutions responded to both interventions and responses were compared. Student responses to the traditionally formatted EPSRI revealed most students applied post-conventional reasoning, which is uncommon for students in their age range. This suggests that students are aware of the ethical framing of the instrument, and answer accordingly with the perceived “right” response. Student responses to Contents Under Pressure showed significant differences from the EPSRI, including more typical conventional responses. These results suggest that the authenticity of the digital environment can produce more realistic student responses to ethical and process safety dilemmas. Situating ethical and process safety instruction within this type of educational intervention may allow students to gain insight on their ethical decision making process in a safer, low-risk environment. 
    more » « less
  3. Embodied virtual agents serving as patient simulators are widely used in medical training scenarios, ranging from physical patients to virtual patients presented via virtual and augmented reality technologies. Physical-virtual patients are a hybrid solution that combines the benefits of dynamic visuals integrated into a human-shaped physical form that can also present other cues, such as pulse, breathing sounds, and temperature. Sometimes in simulation the visuals and shape do not match. We carried out a human-participant study employing graduate nursing students in pediatric patient simulations comprising conditions associated with matching/non-matching of the visuals and shape. 
    more » « less
  4. Equilibrium is a challenging concept for many, largely because developing a deep conceptual understanding of equilibrium requires someone to be able to connect the motions and interactions of particles that cannot be physically observed with macroscopic observations. Particle level chemistry animations and simulations can support student connections of particle motion with macroscopic observations, but for topics such as equilibrium additional visuals such as graphs are typically present which add additional complexity. Helping students make sense of such visuals requires careful scaffolding to draw their attention to important features and help them make connections between representations ( e.g. , particle motion and graphical representations). Further, as students enter our classrooms with varying levels of background understanding, they may require more or less time working with such simulations or animations to develop the desired level of conceptual understanding. This paper describes the development and testing of activities that use the PhET simulation “Reactions and Rates” to introduce the concept of equilibrium as a student preclass activity either in the form of directly using the simulation or guided by an instructor through a screencast. The pre-post analysis of the two most recent implementations of these activities indicates that students show improved understanding of the core ideas underlying equilibrium regardless of instructor, institution, or type of instructional environment (face to face or remote). We also observed that students were more readily able to provide particle level explanations of changes in equilibrium systems as they respond to stresses (such as changes to concentration and temperature) if they have had prior course instruction on collision theory. Lastly, we observed that student answers to explain how an equilibrium will respond to an applied stress more often focus on either initial responses or longer-term stability of concentrations, not on both key aspects. 
    more » « less
  5. Conventional Intelligent Virtual Agents (IVAs) focus primarily on the visual and auditory channels for both the agent and the interacting human: the agent displays a visual appearance and speech as output, while processing the human’s verbal and non-verbal behavior as input. However, some interactions, particularly those between a patient and healthcare provider, inherently include tactile components.We introduce an Intelligent Physical-Virtual Agent (IPVA) head that occupies an appropriate physical volume; can be touched; and via human-in-the-loop control can change appearance, listen, speak, and react physiologically in response to human behavior. Compared to a traditional IVA, it provides a physical affordance, allowing for more realistic and compelling human-agent interactions. In a user study focusing on neurological assessment of a simulated patient showing stroke symptoms, we compared the IPVA head with a high-fidelity touch-aware mannequin that has a static appearance. Various measures of the human subjects indicated greater attention, affinity for, and presence with the IPVA patient, all factors that can improve healthcare training. 
    more » « less